• 제목/요약/키워드: high compressibility number

검색결과 25건 처리시간 0.025초

공기윤활 틸팅패드 저어널 베어링의 윤활특성해석 (The Lubrication Analysis of Air-Lubricated Tilting Pad Joumal Beadng by Direct Method)

  • 김인식;황평
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1993년도 제18회 학술대회 초록집
    • /
    • pp.85-91
    • /
    • 1993
  • Air-Lubricated tilting pad journal bearing that has high stability is analyzed by using the direct method, and this bearing is usually used to need high precision. The pressure that supports the shaft is occured by the differences between the shaft and pads radii of curvatures. So the characteristics of load capacity for their variable values is important. In this paper the load capacity is compared with some of the eccentricity ratio values. The large load oapacity comes form large eccentricity ratio, high bearing number and high preload. But if the preload becomes too high, the shaft comes into contact with the pads. Stiffness and damping coefficients are compared with some of the preload, too. The coefficients decreased along compressibility number with constant load.

  • PDF

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구 (Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects)

  • 김재형;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

공기 포일 스러스트 베어링의 한계 지지하중 해석 (The Limiting Load Capacity of Air Foil Thrust Bearings)

  • 정시영
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.279-284
    • /
    • 2009
  • The limiting load capacity of air foil thrust bearings at extremely high operating speeds is theoretically investigated. The limiting load capacity of a sector is shown to increase as the angular extent ${\beta}$ and the inlet film thickness $h_1$ of the bearing increase, while it decreases with an increase in the ramp ratio b and the compliance ${\alpha}$ of the bearing. But it is found that the angular extent of the bearing is not related to the total limiting load capacity of the $360^{\circ}$ thrust bearing.

Modified Boundary-Fitted Coordinate System Method for HDD Slider Analysis

  • 황평
    • KSTLE International Journal
    • /
    • 제5권2호
    • /
    • pp.52-56
    • /
    • 2004
  • The hard disk drive performance depends strongly on air bearing characterisitcs of the head slider. The objective of the slider design is to provide accurate positioning of the magnetic read/write element at the very small height above the disk. Application of the numerical methods is required due to complexity of the air bearing surface of the slider. The Boundary-Fitted Coordinate System Divergence Formulation method can be used for calculation of pressure distribution in the case of steep film thickness gradients. In the present work, the interpolating functions used in the expression for the Couette flow are modified in order to improve the solution characteristics in the extremely high compressibility number region. The advantages of the modified method are demonstrated on example of the flat skewed slider. Finally, the modi.ed method is applied to analysis of the static characteristics of the femto-slider. The analysis results indicate the effect of the silder's air bearing surface crown on the flying height and the pitching angle in steady state position.

관출구로부터 방출되는 약한 충격파에 관한 3 차원 수치해석 (3-Dimensional Computations of the Weak Shock Wave Discharged from the Exit of Duct)

  • 권용훈;신현동;김희동;이동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1742-1747
    • /
    • 2003
  • When a shock wave is discharged from the exit of a duct, complicated flow is formed near the duct exit. The flow field is much more complicated under the ground effects or any other objects near the exit of a duct, such as the circumstance near the exit of the high-speed railway tunnel. The resulting flow is essentially three-dimensional unsteady with the effects of strong compressibility. In the current study, three-dimensional flow fields of the weak shock wave which is discharged from the exit of a duct are numerically investigated using a CFD method. Computations are performed for the weak shock wave in the range below 1.5. The results obtained show that the directivity and magnitude of the weak shock discharged strongly depend upon the Mach number of initial shock wave and are significantly influenced by the ground effects.

  • PDF

유한변형률 압밀이론에 의한 남해안준설토의 압밀특성에 관한 연구 (The Study on the Consolidation Characteristics of South Coast Spoil Reclaimed Ground by Finite Strain Consolidation Theory)

  • 송명규;임종철;권정근;주인곤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1170-1180
    • /
    • 2009
  • Recently this country has carried out the coast reclamation centering on the west and south coast for effective practical use of a country, considering purchase of materials and environmental problem, most reclaiming work is processing to spoil reclamation which is easy to secure the amount of materials. In case of weak ground that is formed by spoil reclamation like this, initial moisture content is high, as slurry state that is rarely revealed ground strength, compressibility and water permeability have been shown nonlinear change by compaction progress. Analysis of weak ground is unreasonable because the existing Terzaghi compaction theory analyzes compaction fixed number to regular invariable number for prediction of compaction state. This study computes the relation with void ratio-effective pressure and void ratio-finite transformation which is the most basic matter to predict finite strain compaction state of the south coast spoil, and analyze the basic feature to predict compaction feature of the south coast spoil reclaimed ground.

  • PDF

시판 Stocking의 착용에 따른 쾌적성 연구 (A Study on the Comfortability of Wearing Pantyhose)

  • 심부자;박혜준
    • 대한인간공학회지
    • /
    • 제18권1호
    • /
    • pp.71-90
    • /
    • 1999
  • This study was conducted to examine the comfortability of wearing pantyhose in summer. To satisfy this purpose. 4 types of pantyhose were chosen from the market: a Mono type(M), a Wooly type(W), and two Support types(Sl, S2), were chosen. After the performances of samples were measured, these were worn by 8 healthy adult women. Under the summer field environment, psychological comfort ability was examined through the 5 steps of SD method. Physiological comfort ability was examined by measuring the body reactions(clothing pressure, skin temperature, total body weight loss, rectal temperature, pulse rates, and blood pressure), under the artificial environment($28.5{\pm}0.5^{\circ}C$, $82{\pm}3%$). The results of this examination were as follows : The order of comfortability which people felt in the field was W>M>S1>S2. The number of items which showed the highest correlation with comfort ability decreased and the correlation was lowered on the whole as time went by. There was positive high correlation between the performances of samples and comfort ability in compressibility, air permeability, water vapor permeability, while a negative high correlation in thickness, weight, compressional resiliency, strain (course) and moisture regain. The mean skin temperature was in the comfort zone, and rectal temperature, pulse rates, blood pressure were mostly in the normal range. Also it was showed that the correlation between the performance of samples and body reactions, except total body weight loss, was low.

  • PDF

고속철도 토공구간 쌓기 재료의 다짐함수비 조건에 따른 장기침하 특성 (Long-term Settlement of High Speed Railway Embankment Compacted under Dry/Wet Condition)

  • 이성진;이일화;이진욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1268-1277
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. This wetting collapse problem for the compressibility of compacted sands, gravels and rockfills, has been recognized by several researchers. For this wetting settlement problem, we showed the test results carried out with 4 fill materials. These tests were performed under the condition that the fill materials were inundated at the first wetting. Subsequently, in this study, we investigated the long-term settlement characteristics of the fill materials under the repeated partial wetting and rising of the ground water table happend by rainfall.

  • PDF