• 제목/요약/키워드: high Temperature oxidation

검색결과 1,139건 처리시간 0.024초

고온하의 CW 레이져 스페클 사진법과 화상처리에 의한 열팽창계수 측정에 관한 연구 (Measurement of Thermal Coefficient at High Temperature by CW-Laser Speckle Photography and Image Processing)

  • 김경석;최정석
    • 한국정밀공학회지
    • /
    • 제9권4호
    • /
    • pp.90-99
    • /
    • 1992
  • In resent year Laser Speckle and its development have enabled surface deformation of engineering components and materials to be interferometrically examined. Laser Speckle- Pettern Interferometry Method is a very useful method for measuring In-plane components of displacement. In measuring thermal expansion coefficient, the various problems generated were established, and the measuring limitation examined. Metarial INCONEL 601 was used in experiments. Specimen was heated to the high temperature(100$0^{\circ}C$) by diong current to the direct two specimen. Then, those problems appear to the influence of back-ground radiation by the heated specimen, the influence by air turbulence, the oxidation of specimen. The color monitor and interference filter prevented the back-ground radiation by rad heat. The oxidation occuring in specimen itself was not generated by the being acid-proof excellence of material INCONEL 601. Yet, in this experiments, the serious problems are the oxidation of specimen and influence by air turbulence. By more reserching these problems forward, it is helpful that the thermal expansion coefficient of many materials is directly measured under high temperature.

  • PDF

초고온용 발열체 (Mo1-xWx)Si2의 산화거동에 대한 연구 (Oxidation behavior of (Mo1-xWx)Si2 high-temperature heating elements)

  • 이성철;명재하;김용남;전민석;이동원;오종민;김배연
    • 한국결정성장학회지
    • /
    • 제30권5호
    • /
    • pp.200-207
    • /
    • 2020
  • SHS 법으로 MoSi2 분말, (Mo1/2W1/2)Si2 분말 및 WSi2 분말을 합성하고 이 분말들을 500℃, 1,000℃, 1,200℃, 1,300℃, 1,400℃, 1,500℃ 및 1,600℃에서 열처리한 다음, 결정구조 및 열중량 변화 등을 관찰하였다. Mo-W-Si계의 silicide 분말은 500℃의 저온에서도 산화 반응이 일어나며, 저온 산화 및 분해로 생성되는 결정상은 MoO3이었다. 1,200℃ 이상에서 열처리를 한 경우에 분해반응으로 생성된 SiO2의 결정상은 상온에서 흔히 관찰되는 α-quartz가 아닌 α-cristobalite 상으로 생성되었다. W이 포함되면 저온과 고온에서 분해 반응이 더 많이 일어나는 것으로 나타났으며, 분말을 성형하여 소결한 시편의 경우에 MoSi2와 (Mo1/2W1/2)Si2는 저온이나 고온에서 1시간 열처리를 하더라도 저온산화에 의한 분해와 그에 따른 질량 변화 반응을 관찰하기 어려웠지만 WSi2는 저온 산화에 의하여 소결 자체가 어려웠다.

페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking에 미치는 합금원소의 효과 (Effects of Alloying Elements on Sticking Occurring During Hot Rolling of Ferritic Stainless Steels)

  • 하대진;김용진;이종석;이용득;이성학
    • 대한금속재료학회지
    • /
    • 제46권9호
    • /
    • pp.593-603
    • /
    • 2008
  • In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content.

Spalling of the Oxide Scales Foemed on Stainless Steels During Cooling

  • Saeki, Isao;Ogama, Tetsuro;Furuichi, Ryusaburo;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.225-232
    • /
    • 2003
  • High temperature oxidation of SUS430 and SUS304 stainless steels in 16.7 kPa $O_2$ - 20.3 kPa $H_2O$ - balanced N2 atmosphere at 1273 K was studied focused on the scale spalling during cooling after an isothermal oxidation. Spalling of the oxide scale during cooling occurred only for SUS304 stainless steel. The oxide scale was composed of two layers and they detached at the interface between them. The reason for the spalling could not be explained only by thermal stresses applied to the specimen during heating and cooling. A new mechanism for scale spalling was proposed based on combination of thermal stresses and thermal shock caused by a fast Martensite transformation of substrate metal.

TiAl계 XD45, XD47 금속간 화합물의 고온산화거동 (High Temperature Oxidation of TiAl-based XD 45 and XD47 Intermetallics)

  • 심웅식;이동복
    • 한국표면공학회지
    • /
    • 제35권4호
    • /
    • pp.193-198
    • /
    • 2002
  • Alloys of XD45 (Ti45A12Nb2Mn-0.8vol%TiB$_2$) and XD47 (Ti47A12Nb2Mn-0.8vol%TiB$_2$) were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The oxide scales consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of ($TiO_2$+$Al_2$$O_3$). Nb tended to present at the lower part of the oxide scale, whereas Mn at the upper part of the oxide scale. The Pt marker tests indicated that the outer oxide layer grew primarily by the outward diffusion of Ti and Mn, and the inner mixed layer by the inward transport of oxygen.

Shock-Tube Study of the Oxidation of Acetaldehyde at High Temperature

  • 원석재;류지철;배준현;김윤도;강준길
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권5호
    • /
    • pp.487-492
    • /
    • 2000
  • The combustion characteristics of a mixture of acetaldehyde, oxygen and argon behind a reflected shock wave at temperatures ranging from 1320 to 1897 K at 100 torr were studied. The emission from the OH radical at 306.4 nm and the pressure profile behind the reflected shock were measured to monitor ignition delay time. The ignition delay times were computed from a proposed mechanism of 110 elementary reactions involving 34 species. The simulation and sensitivity analysis confirm that the main channel for oxidation of acetaldehyde at high temperature consists of the Rice-herzfeld mechanism, the decomposition and oxidation of HCO, and the reaction of H with $O_2$.

Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향 (Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys)

  • 윤장원;현용택;김정한;염종택;윤석영
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성 (Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame)

  • 김용호;김용태;김수형;이동근
    • 한국입자에어로졸학회지
    • /
    • 제4권2호
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

Mo-DTP와 Zn-DTP를 혼합 첨가한 엔진 오일의 마찰 마모특성에 관한 연구 (A Study on the Friction and Wear Characteristics Engine Oil with Mo-DTP and Zn-DTP)

  • 김종호;강석춘;정근우;조원오
    • Tribology and Lubricants
    • /
    • 제7권1호
    • /
    • pp.46-54
    • /
    • 1991
  • As the additives of engine oil, Mo-DTP and Zn-DTP were studied by experimental works. These additives were added to the engine oil with various ratios, which was an attempt to find out the best ratio at which the wear and friction can be reduced effectively; Mo-DTP is belived to be able to decrease the frictioh of the sliding metal, while Zn-DTP is known as a very stable additive for oxidation at high temperature in addition to the good antiwear property. This study showed that the optimum addition ratio of Mo-DTP and Zn-DTP is 3:2. This oil made it possible to slide steel with minimum wear and low friction over various lovels of load at moderate temperature. But as the oil temperature increased, the wear slid with Mo-DTP oil was increased more. The reason of this result was that Mo-DTP deteriorated the property of oil at high temperature by the higher oxidation and viscosity of Mo-DTP oil than that of Zn-DTP oil.