• Title/Summary/Keyword: high $O_2$

Search Result 12,444, Processing Time 0.038 seconds

Microstructural Changes of $SiO_2-Si$ During Liquid-Phase Sintering (액상소결단계에서 $SiO_2-Si$의 미세조직 변화)

  • 강대갑;정충환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.443-447
    • /
    • 1994
  • Compacts of mixed SiO2-Si powder were liquid phase sintered at 145$0^{\circ}C$ for up to 60 min in a hydrogen atmosphere. In contrast to the conventional microstructures of liquid phase sintered materials, the specimens showed that the solid phase of SiO2 formed a matrix while the liquid phase of Si was the dispersed in the solid matrix. The dispersion of liquid Si pockets was attributed to the high wetting angle of liquid Si on solid SiO2. Because of relatively high solubility of SiO2 in liquid Si at 145$0^{\circ}C$, SiO2 particles accommodated their shape via a solution-reprecipitation process. The liquid Si pockets grew by coalescing with their neighbour pockets. In the latter stage of the sintering, plate-shape grains appeared in the liquid Si pockets. The grains were SiO2 phase precipitated from the liquid Si which was oversaturated with oxygen during cooling to room temperature. By the formation and subsequent removal of the gaseous SiO phase due to the reaction between SiO2 and Si, the specimens became porous.

  • PDF

Physical and Microwave Dielectric Properties of the MgO-SiO2 System

  • Yeon, Deuk-Ho;Han, Chan-Su;Key, Sung-Hoon;Kim, Hyo-Eun;Kang, Jong-Yun;Cho, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.550-554
    • /
    • 2009
  • Unreported dielectrics based on the binary system of MgO-SiO$_2$ were investigated as potential candidates for microwave dielectric applications, particularly those demanding a high fired density and high quality factors. Extensive dielectric compositions having different molar ratios of MgO to SiO$_2$, such as 2:1, 3:1, 4:1, and 5:1, were prepared by conventional solid state reactions between MgO and SiO$_2$. 1 mol% of V$_2$O$_5$ was added to aid sintering for improved densification. The dielectric compositions were found to consist of two distinguishable phases of Mg$_2$SiO$_4$ and MgO beyond the 2:1 compositional ratio, which determined the final physical and dielectric properties of the corresponding composite samples. The increase of the ratio of MgO to SiO$_2$ tended to improve fired density and quality factor (Q) without increasing grain size. As a promising composition, the 5MgO.SiO$_2$ sample sintered at 1400 $^{\circ}C$ exhibited a low dielectric constant of 7.9 and a high Q $\times$ f (frequency) value of $\sim$99,600 at 13.7 GHz.

A study of sintering behavior of spray coating in CaO-Al2O3-SiO2 glasses on Al2O3 substrate (CaO-Al2O3-SiO2 계 유리 스프레이 코팅막의 소성 거동에 대한 연구)

  • Na, Hyein;Park, Jewon;Park, Jae-Hyuk;Kim, Dae-Gun;Choi, Sung-Churl;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.298-307
    • /
    • 2019
  • Two types of CaO-Al2O3-SiO2 (CAS) glass powder applied spray coating on the surface of sintered Al2O3 were researched for sintering behavior; (1) Si-rich, glass containing high content SiO2, (2) Ca-rich, containing high content CaO. Foaming of bubbles remaining inside the Ca-rich glass was produced at a viscosity of approximately 107~109 poise, resulting in decreasing shrinkage (interfering with sintering) and increasing surface roughness. In case of Si-rich glass, there was no serious foaming bubbles phenomenon like Ca-rich below 1000℃, however cristobalite crystals with low density occurred at 1200℃ and then produced re-foaming of bubbles, resulting in abnormal sintering behavior. These phenomenon is considered to be a decrease in viscosity due to an increase in the Ca content of the glass according to the formation of low-density cristobalite crystals. Therefore, in case of CAS glass, it is necessary to consider the increase of surface roughness and the sintering interference because of foaming bubbles phenomenon at low temperature sintering. Especially, when containing high SiO2 content, abnormal foaming phenomenon due to crystallization at high temperature should be predicted.

A High Pressure Behavior Study of TiO2-complex (고압 하에서 TiO2 복합체의 거동에 대한 연구)

  • Kim, Young-Ho;Kim, Sungjin;Choi, Jaeyoung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.127-136
    • /
    • 2017
  • High pressure has been applied to check the pressure effect on the powdered $TiO_2$-complex, which was synthesized for ultra-violet rays cutoff and antimicrobial applications. $TiO_2$-complex consists of anatase, rutile and silver chloride. Grain size was determined to be ~34 nm. Both anatase and rutile begin structural phase transitions to $ZrO_2$ (baddeleyite)-type crystal structures at 14~16 GPa, then sustain their phases up to 22.7 GPa. Under decompression to 0.0001 GPa (ambient pressure), rutile transforms to another phase with ${\alpha}-PbO_2$ structure, while anatase retains its high pressure structure upon complete decompression. Silver chloride peaks disappear at the low pressures.

A Study of the Memory Characteristics of Al2O3/Y2O3/SiO2 Multi-Stacked Films with Different Tunnel Oxide Thicknesses (터널 산화막 두께에 따른 Al2O3/Y2O3/SiO2 다층막의 메모리 특성 연구)

  • Jung, Hye Young;Choi, Yoo Youl;Kim, Hyung Keun;Choi, Doo Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.631-636
    • /
    • 2012
  • Conventional SONOS (poly-silicon/oxide/nitride/oxide/silicon) type memory is associated with a retention issue due to the continuous demand for scaled-down devices. In this study, $Al_2O_3/Y_2O_3/SiO_2$ (AYO) multilayer structures using a high-k $Y_2O_3$ film as a charge-trapping layer were fabricated for nonvolatile memory applications. This work focused on improving the retention properties using a $Y_2O_3$ layer with different tunnel oxide thickness ranging from 3 nm to 5 nm created by metal organic chemical vapor deposition (MOCVD). The electrical properties and reliabilities of each specimen were evaluated. The results showed that the $Y_2O_3$ with 4 nm $SiO_2$ tunnel oxide layer had the largest memory window of 1.29 V. In addition, all specimens exhibited stable endurance characteristics (program/erasecycles up to $10^4$) due to the superior charge-trapping characteristics of $Y_2O_3$. We expect that these high-k $Y_2O_3$ films can be candidates to replace $Si_3N_4$ films as the charge-trapping layer in SONOS-type flash memory devices.

Anodic formation of TiO2 nanoporous structures at high temperature in a glycerol/phosphate electrolyte

  • Lee, Gi-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.95.2-95.2
    • /
    • 2017
  • Anodic TiO2 nanostructures have wide applications due to their various functional properties such as wide band-gap, chemical stability, and anti-corrosiveness. In order to enhance the properties, several approaches to fabricate TiO2 structures have been developed. Especially, TiO2 nanotube arrays prepared by anodization in a fluoride electrolyte show impressive properties for dye sensitized solar cells1 and photocatalyst. In this presentation, we introduce new types of TiO2 nanostructures beyond TiO2 nanotubes that are fabricated by anodization at high temperature in a glycerol/phosphate electrolyte. We show that depending on the anodization parameters different self-organized morphologies - of highly aligned, high aspect ratio oxide structures can be formed. Critical factor for growth and the use for dye sensitized solar cells and photocatalyst will be discussed.

  • PDF

Characterization of Vanadium Oxide Supported on Zirconia and Modified with MoO3

  • Sohn, Jong-Rack;Seo, Ki-Cheol;Pae, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.311-317
    • /
    • 2003
  • Vanadium oxides supported on zirconia and modified with MoO₃were prepared by adding Zr(OH)₄powder into a mixed aqueous solution of ammonium metavanadate and ammonium molybdate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using FTIR, Raman spectroscopy and solid-state $^{51}V$ NMR. In the case of a calcination temperature of 773 K, for samples containing low loading of $V_2O_5$, below 15 wt %, vanadium oxide was in a highly dispersed state, while for samples containing high loading of $V_2O_5$, equal to or above 15 wt %, vanadium oxide was well crystallized because the $V_2O_5$ loading exceeded the formation of a monolayer on the surface of $ZrO_2$. The $ZrV_2O_7$ compound was formed through the reaction of $V_2O_5\;and\;ZrO_2$ at 873 K and the compound decomposed into $V_2O_5\;and\;ZrO_2$ at 1073 K, which were confirmed by FTIR spectroscopy and solid-state $^{51}V$ NMR. IR spectroscopic studies of ammonia adsorbed on $V_2O_5-MoO_3/ZrO_2$ showed the presence of both Lewis and Bronsted acids.

Preparation and thermodynamics consideration of MgO-Al spinel by self-propagation high- temperature synthesis (자전고온연소합성법에 의한 MgO-Al 스피넬 제조 및 열역학적 고찰)

  • Byun, Hun-Soo;Choi, Tae-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.573-580
    • /
    • 1998
  • Self-propagating high temperature synthesis (SHS) technique was used to synthesize the spinel phase of $MgAl_2O_4$ from MgO and Al powder. Thermit reaction products of MgO and Al, The reaction products were heat treated at the temperature $800^{\circ}C$ preheating. Processing factors such as DTA/TG, combustium product and maxium temperature, synthesis of MgO and Al from "$MgO+2Al+3/2O_2$\rightarrow$MgAl_2O_4$". An activation energy (${\Delta}H^{\circ}$)-264.8 kcal/mol and reaction of maxium temperature 5634 K was calculated to form a $MgAl_2O_4$ spinel from unreacted materials. Pellet were increased volume 6% after thermit reaction. reaction.

  • PDF

Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films (Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할)

  • Cho, Tae-Sik;Jeong, Ji-Wook;Kwon, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF