Browse > Article
http://dx.doi.org/10.9727/jmsk.2017.30.3.127

A High Pressure Behavior Study of TiO2-complex  

Kim, Young-Ho (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Kim, Sungjin (School of Advanced Materials & Engineering, Kumoh National Institute of Technology)
Choi, Jaeyoung (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.30, no.3, 2017 , pp. 127-136 More about this Journal
Abstract
High pressure has been applied to check the pressure effect on the powdered $TiO_2$-complex, which was synthesized for ultra-violet rays cutoff and antimicrobial applications. $TiO_2$-complex consists of anatase, rutile and silver chloride. Grain size was determined to be ~34 nm. Both anatase and rutile begin structural phase transitions to $ZrO_2$ (baddeleyite)-type crystal structures at 14~16 GPa, then sustain their phases up to 22.7 GPa. Under decompression to 0.0001 GPa (ambient pressure), rutile transforms to another phase with ${\alpha}-PbO_2$ structure, while anatase retains its high pressure structure upon complete decompression. Silver chloride peaks disappear at the low pressures.
Keywords
$TiO_2$-complex; anatase; rutile; $ZrO_2$-structure; ${\alpha}-PbO_2$ structure;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Al-Khatatbeh, Y., Lee, K.K.M., and Kiefer, B. (2012) Compressibility of nanocrystalline $TiO_2$ anatase, J. Phys. Chem., 116, 21635-21639.
2 Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations, Zeischrift fur Kristallographie, 229, 405-419.
3 Babu, E.S., Kim, S., and Jeon, H.W. (2017) Novel preparing of Fe-doped $TiO_2$ nanoparticles and their application for gas sensor and photocatalytic degradation, (personal communications).
4 Barborini, E., Kholmanov, I.N., Piseri, P., Ducati, C., Bottani C.E., and Milani, P. (2002) Engineering the nanocrystalline structure of $TiO_2$ films by aerodynamically filtered cluster deposition. Appl. Phys. Lett., 81, 3052-3054.   DOI
5 Bell, P.M., Xu, J., and Mao, H.K. (1986) Static compression of gold and copper and calibration of the ruby pressure scale to 1.8 Megabars, in Shock Waves in Condensed matter. Gupta, Y.M. (eds), Plenum Pub. Co., New York, 125-130.
6 Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., and Gole, J.L. (2003) Enhanced nitrogen doping in $TiO_2$ nanoparticles. Nano Letters 3, 1049-1051.   DOI
7 Chijioke, A.D., Nellis, W.J., Soldatov, A., and Silvera, I.F. (2005) The ruby pressure standard to 150 GPa, Journal of Applied Physics, 1149051-1149059.
8 Gerward, L. and Olsen, J.S. (1997) Post-rutile high-pressure phases in $TiO_2$. J. Appl. Cryst., 30, 259-264.   DOI
9 Hazen, R.M. and Finger, L.W. (1981) Bulk moduli and high-pressure crystal structures of rutile-type compounds, J. Phys. Chem. Solids, 42, 143-151.   DOI
10 Hwang, G.H. and Choi, J.B. (2008) Determination of crystal size and microstrain of $CeO_2$ by Rietveld structure refinement. J. Miner. Soc. Korea, 21(2), 201-208(in Korean with English abstract).
11 Hwang, G.H. and Kim, Y.H. (2012) Phase transition studies on $TiO_2$ anatase under high pressure. J. Miner. Soc. Korea, 25(2), 77-84 (in Korean with English abstract).   DOI
12 Kim, Y.H., Choi, J., Heo, S., Jeong, N., and Hwang, G.C. (2015) High pressure behavior study of the apophyllite(KF), J. Miner. Soc. Korea, 28(4), 325-332 (in Korean with English abstract).   DOI
13 Kim, Y.H., Hwang, G.H., and Kim, S.O. (2009) Compression study on a synthetic goethite, J. Miner. Soc. Korea, 22(4), 325-330 (in Korean with English abstract).
14 Kim, Y.H. and Lee, N. (2016) Compression study of pyromorphite at high pressure, J. Miner. Soc. Korea, 29(4), 191-198 (in Korean with English abstract).   DOI
15 Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 91, 4673-4676.   DOI
16 Kingma, K.J., Cohen, R., Hemley, R., and Mao, H.K. (1995) Transformation of stishovite to a denser phase at lower-mantle pressure. Lett. Nature, 374, 243-244.   DOI
17 Klug, H.P. and Alexander, L.E. (1974) X-rays; x-ray diffraction. John Wiley & Sons, New York, 966p.
18 Liu, L., Mernagh, T.P., and Hibberson, W.O. (1997) Raman spectra of high-pressure polymorphs of $SiO_2$ at various temperatures. Phys. Chem. Minerals 23, 396-402.
19 Ming, L.C. and Manghnani, M.H. (1979) Isothermal compression of $TiO_2$ (rutile) under hydrostatic pressure to 106 kbar. J. Geophys. Res., 84, 4777-4779.   DOI
20 Moon, J., Takagi, H., Fujishiro, T., and Awano, M. (2001) Preparation and characterization of the Sb doped $TiO_2$ photocatalysts. J. Mat. Sci., 36, 949-955.   DOI
21 Ono, S., Hirose, K, Murakami, M., and Ishiki, J. (2002) Post-stishovite phase boundary in $SiO_2$ determined by in situ x-ray observations. Earth & Planet. Sci. Lett., 197, 187-192.   DOI
22 Park, S., Jang, J., Cheon, J., Lee, H., Lee, D., and Lee, Y. (2008) Shape-dependent compressibility of $TiO_2$ anatase nanoparticles. J. Phys. Chem. C, 112, 9627-9631.   DOI
23 Sekiya, T., Ohta, S., Kamei, S., Hanakawa, M., and Kurita, S. (2001) Raman spectroscopy and phase transition of anatase $TiO_2$ under high pressure. J. of Phys. Chem. Solids 62, 717-721.   DOI
24 Zhang Y.H. and Reller, A. (2002) Phase transformation and grain growth of doped nanosized titania, Mat. Dci. & Eng. C, 19, 323-326.   DOI
25 Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., McMillan, P.F., Prakapenka, V.B., Shen, G., and Muddle, B.C. (2006a) Size-dependent pressure-induced amorphization in nanoscale $TiO_2$. Phys. Rev. Lett., 96, 135702.   DOI
26 Swamy, V., A., Dubrovinsky, L.S., Dubrovinskaia, N.A., Simionovici, A.S., Drakopoulos, M., Dmitriev, V., and Weber, H.P. (2003) Anomalous compression behavior of -12 nm nanocrystalline $TiO_2$. Solid State Commum., 125, 111-115.   DOI
27 Swamy, V., Muddle, B.C., and Dai, Q. (2006b) Size-dependent modifications of the Raman spectrum of rutile $TiO_2$. Appl. Phys. Lett., 89, 163118.   DOI
28 Wagemaker, M., Kearley, G.J., van Well, A.A., Mutka, H., and Mulder, F.M. (2003) Multiple Li positions inside oxygen octahedra in lithiated $TiO_2$ anatase. J. Am. Chem. Soc. 125, 840-848.   DOI
29 Wang, Y., Hao, Y., Cheng, H., Ma, J., Xu, B., Li, W., and Cai, S. (1999) The photoelectrochemistry of transition metal-ion-doped $TiO_2$ nanocrystalline electrodes and higher solar cell conversion efficiency based on $Zn^{2+}$-doped $TiO_2$ electrode, J. Mat. Sci. 34(12), 2773-2779.   DOI
30 Wang, Z. and Saxena, S.K. (2001) Raman spectoscopic study on pressure-induced amorphization in nanocrysalline anatase($TiO_2$). Solid State Comm. 118, 75-78.   DOI
31 Zaleska, A. (2008) Doped-$TiO_2$: A Review, Recent patents on Engineering, 2(3), 157-164.   DOI