DOI QR코드

DOI QR Code

A High Pressure Behavior Study of TiO2-complex

고압 하에서 TiO2 복합체의 거동에 대한 연구

  • Kim, Young-Ho (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Sungjin (School of Advanced Materials & Engineering, Kumoh National Institute of Technology) ;
  • Choi, Jaeyoung (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 김영호 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 김성진 (금오공과대학교 신소재공학부) ;
  • 최재영 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2017.09.05
  • Accepted : 2017.09.28
  • Published : 2017.09.30

Abstract

High pressure has been applied to check the pressure effect on the powdered $TiO_2$-complex, which was synthesized for ultra-violet rays cutoff and antimicrobial applications. $TiO_2$-complex consists of anatase, rutile and silver chloride. Grain size was determined to be ~34 nm. Both anatase and rutile begin structural phase transitions to $ZrO_2$ (baddeleyite)-type crystal structures at 14~16 GPa, then sustain their phases up to 22.7 GPa. Under decompression to 0.0001 GPa (ambient pressure), rutile transforms to another phase with ${\alpha}-PbO_2$ structure, while anatase retains its high pressure structure upon complete decompression. Silver chloride peaks disappear at the low pressures.

자외선 차단기능과 제균 기능을 갖는 합성 $TiO_2$-복합체에 대해 압력의 영향을 체크하기 위해 고압실험을 시행하였다. 복합체 분말시료는 아나타제와 루틸 및 염화은으로 구성되어 있으며, 입자크기는 34 nm 정도로 결정되었다. 아나타제와 루틸 모두 약 14~16 GPa 구간에서 $ZrO_2$ (배델레이트)-형태의 결정구조로 상변이하며, 본 실험의 최고압력인 22.7 GPa까지 상변이는 계속된다. 압력을 모두 제거하여 상압 상태가 되면, 루틸은 ${\alpha}-PbO_2$ 구조로 상변이하며 아나타제는 고압의 $ZrO_2$-결정구조가 유지되는 것으로 판단된다. 염화은의 회절피크는 낮은 압력에서 사라지는 것이 관찰되었다.

Keywords

References

  1. Al-Khatatbeh, Y., Lee, K.K.M., and Kiefer, B. (2012) Compressibility of nanocrystalline $TiO_2$ anatase, J. Phys. Chem., 116, 21635-21639.
  2. Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations, Zeischrift fur Kristallographie, 229, 405-419.
  3. Babu, E.S., Kim, S., and Jeon, H.W. (2017) Novel preparing of Fe-doped $TiO_2$ nanoparticles and their application for gas sensor and photocatalytic degradation, (personal communications).
  4. Barborini, E., Kholmanov, I.N., Piseri, P., Ducati, C., Bottani C.E., and Milani, P. (2002) Engineering the nanocrystalline structure of $TiO_2$ films by aerodynamically filtered cluster deposition. Appl. Phys. Lett., 81, 3052-3054. https://doi.org/10.1063/1.1510579
  5. Bell, P.M., Xu, J., and Mao, H.K. (1986) Static compression of gold and copper and calibration of the ruby pressure scale to 1.8 Megabars, in Shock Waves in Condensed matter. Gupta, Y.M. (eds), Plenum Pub. Co., New York, 125-130.
  6. Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., and Gole, J.L. (2003) Enhanced nitrogen doping in $TiO_2$ nanoparticles. Nano Letters 3, 1049-1051. https://doi.org/10.1021/nl034332o
  7. Chijioke, A.D., Nellis, W.J., Soldatov, A., and Silvera, I.F. (2005) The ruby pressure standard to 150 GPa, Journal of Applied Physics, 1149051-1149059.
  8. Gerward, L. and Olsen, J.S. (1997) Post-rutile high-pressure phases in $TiO_2$. J. Appl. Cryst., 30, 259-264. https://doi.org/10.1107/S0021889896011454
  9. Hazen, R.M. and Finger, L.W. (1981) Bulk moduli and high-pressure crystal structures of rutile-type compounds, J. Phys. Chem. Solids, 42, 143-151. https://doi.org/10.1016/0022-3697(81)90074-3
  10. Hwang, G.H. and Choi, J.B. (2008) Determination of crystal size and microstrain of $CeO_2$ by Rietveld structure refinement. J. Miner. Soc. Korea, 21(2), 201-208(in Korean with English abstract).
  11. Hwang, G.H. and Kim, Y.H. (2012) Phase transition studies on $TiO_2$ anatase under high pressure. J. Miner. Soc. Korea, 25(2), 77-84 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.2.077
  12. Kim, Y.H., Choi, J., Heo, S., Jeong, N., and Hwang, G.C. (2015) High pressure behavior study of the apophyllite(KF), J. Miner. Soc. Korea, 28(4), 325-332 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2015.28.4.325
  13. Kim, Y.H., Hwang, G.H., and Kim, S.O. (2009) Compression study on a synthetic goethite, J. Miner. Soc. Korea, 22(4), 325-330 (in Korean with English abstract).
  14. Kim, Y.H. and Lee, N. (2016) Compression study of pyromorphite at high pressure, J. Miner. Soc. Korea, 29(4), 191-198 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2016.29.4.191
  15. Kingma, K.J., Cohen, R., Hemley, R., and Mao, H.K. (1995) Transformation of stishovite to a denser phase at lower-mantle pressure. Lett. Nature, 374, 243-244. https://doi.org/10.1038/374243a0
  16. Klug, H.P. and Alexander, L.E. (1974) X-rays; x-ray diffraction. John Wiley & Sons, New York, 966p.
  17. Liu, L., Mernagh, T.P., and Hibberson, W.O. (1997) Raman spectra of high-pressure polymorphs of $SiO_2$ at various temperatures. Phys. Chem. Minerals 23, 396-402.
  18. Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  19. Ming, L.C. and Manghnani, M.H. (1979) Isothermal compression of $TiO_2$ (rutile) under hydrostatic pressure to 106 kbar. J. Geophys. Res., 84, 4777-4779. https://doi.org/10.1029/JB084iB09p04777
  20. Moon, J., Takagi, H., Fujishiro, T., and Awano, M. (2001) Preparation and characterization of the Sb doped $TiO_2$ photocatalysts. J. Mat. Sci., 36, 949-955. https://doi.org/10.1023/A:1004819706292
  21. Ono, S., Hirose, K, Murakami, M., and Ishiki, J. (2002) Post-stishovite phase boundary in $SiO_2$ determined by in situ x-ray observations. Earth & Planet. Sci. Lett., 197, 187-192. https://doi.org/10.1016/S0012-821X(02)00479-X
  22. Park, S., Jang, J., Cheon, J., Lee, H., Lee, D., and Lee, Y. (2008) Shape-dependent compressibility of $TiO_2$ anatase nanoparticles. J. Phys. Chem. C, 112, 9627-9631. https://doi.org/10.1021/jp801555a
  23. Sekiya, T., Ohta, S., Kamei, S., Hanakawa, M., and Kurita, S. (2001) Raman spectroscopy and phase transition of anatase $TiO_2$ under high pressure. J. of Phys. Chem. Solids 62, 717-721. https://doi.org/10.1016/S0022-3697(00)00229-8
  24. Swamy, V., A., Dubrovinsky, L.S., Dubrovinskaia, N.A., Simionovici, A.S., Drakopoulos, M., Dmitriev, V., and Weber, H.P. (2003) Anomalous compression behavior of -12 nm nanocrystalline $TiO_2$. Solid State Commum., 125, 111-115. https://doi.org/10.1016/S0038-1098(02)00601-4
  25. Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., McMillan, P.F., Prakapenka, V.B., Shen, G., and Muddle, B.C. (2006a) Size-dependent pressure-induced amorphization in nanoscale $TiO_2$. Phys. Rev. Lett., 96, 135702. https://doi.org/10.1103/PhysRevLett.96.135702
  26. Swamy, V., Muddle, B.C., and Dai, Q. (2006b) Size-dependent modifications of the Raman spectrum of rutile $TiO_2$. Appl. Phys. Lett., 89, 163118. https://doi.org/10.1063/1.2364123
  27. Wagemaker, M., Kearley, G.J., van Well, A.A., Mutka, H., and Mulder, F.M. (2003) Multiple Li positions inside oxygen octahedra in lithiated $TiO_2$ anatase. J. Am. Chem. Soc. 125, 840-848. https://doi.org/10.1021/ja028165q
  28. Wang, Y., Hao, Y., Cheng, H., Ma, J., Xu, B., Li, W., and Cai, S. (1999) The photoelectrochemistry of transition metal-ion-doped $TiO_2$ nanocrystalline electrodes and higher solar cell conversion efficiency based on $Zn^{2+}$-doped $TiO_2$ electrode, J. Mat. Sci. 34(12), 2773-2779. https://doi.org/10.1023/A:1004658629133
  29. Wang, Z. and Saxena, S.K. (2001) Raman spectoscopic study on pressure-induced amorphization in nanocrysalline anatase($TiO_2$). Solid State Comm. 118, 75-78. https://doi.org/10.1016/S0038-1098(01)00046-1
  30. Zhang Y.H. and Reller, A. (2002) Phase transformation and grain growth of doped nanosized titania, Mat. Dci. & Eng. C, 19, 323-326. https://doi.org/10.1016/S0928-4931(01)00409-X
  31. Zaleska, A. (2008) Doped-$TiO_2$: A Review, Recent patents on Engineering, 2(3), 157-164. https://doi.org/10.2174/187221208786306289

Cited by

  1. High Pressure Behavior Study of Azurite vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.277