• 제목/요약/키워드: hierarchical neural network

검색결과 127건 처리시간 0.036초

Hierarchical neural network for damage detection using modal parameters

  • Chang, Minwoo;Kim, Jae Kwan;Lee, Joonhyeok
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.457-466
    • /
    • 2019
  • This study develops a damage detection method based on neural networks. The performance of the method is numerically and experimentally verified using a three-story shear building model. The framework is mainly composed of two hierarchical stages to identify damage location and extent using artificial neural network (ANN). The normalized damage signature index, that is a normalized ratio of the changes in the natural frequency and mode shape caused by the damage, is used to identify the damage location. The modal parameters extracted from the numerically developed structure for multiple damage scenarios are used to train the ANN. The positive alarm from the first stage of damage detection activates the second stage of ANN to assess the damage extent. The difference in mode shape vectors between the intact and damaged structures is used to determine the extent of the related damage. The entire procedure is verified using laboratory experiments. The damage is artificially modeled by replacing the column element with a narrow section, and a stochastic subspace identification method is used to identify the modal parameters. The results verify that the proposed method can accurately detect the damage location and extent.

다중 작업, 다중 홉 질문 응답을 위한 그래프 추론 및 맥락 융합 (Graph Reasoning and Context Fusion for Multi-Task, Multi-Hop Question Answering)

  • 이상의;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권8호
    • /
    • pp.319-330
    • /
    • 2021
  • 최근 오픈 도메인 자연어 질문 응답 분야에서는 다중 작업, 다중 홉 질문 응답에 관한 연구들이 활발히 진행되어 오고 있다. 본 논문에서는 이러한 다중 작업, 다중 홉 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 여러 문단들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 답변 유형, 뒷받침 문장들과 답변 영역 등을 동시에 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 높은 성능과 긍정적 효과를 입증한다.

Unsupervised learning with hierarchical feature selection for DDoS mitigation within the ISP domain

  • Ko, Ili;Chambers, Desmond;Barrett, Enda
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.574-584
    • /
    • 2019
  • A new Mirai variant found recently was equipped with a dynamic update ability, which increases the level of difficulty for DDoS mitigation. Continuous development of 5G technology and an increasing number of Internet of Things (IoT) devices connected to the network pose serious threats to cyber security. Therefore, researchers have tried to develop better DDoS mitigation systems. However, the majority of the existing models provide centralized solutions either by deploying the system with additional servers at the host site, on the cloud, or at third party locations, which may cause latency. Since Internet service providers (ISP) are links between the internet and users, deploying the defense system within the ISP domain is the panacea for delivering an efficient solution. To cope with the dynamic nature of the new DDoS attacks, we utilized an unsupervised artificial neural network to develop a hierarchical two-layered self-organizing map equipped with a twofold feature selection for DDoS mitigation within the ISP domain.

계층적 구조를 가진 Fuzzy Neural Network를 이용한 이동로보트의 주행법 (Navigation Strategy of Mobile Robots based on Fuzzy Neural Network with Hierarchical Structure)

  • 최정원;한교경;박만식;이석규
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.269-273
    • /
    • 2000
  • This paper proposes a algorithm for several mobile robots navigation. There are three parts in this algorithm. First part generates robots turning angle and moving distance for goal approaching, sencond part generates robots avoiding angle and avoiding distance for static obstacles or other robots and third part adjust between robots moving distance and avoiding distance. Most simulation results of this algorithm are very effective for several mobile robots traveling in unknown field.

  • PDF

Two-Degree-of Freedom Fuzzy Neural Network Control System And Its Application To Vehicle Control

  • Sekine, Satoshi;Yamaguchi, Toru;Tamagawa, Kouichirou;Endo, Tunekazu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1121-1124
    • /
    • 1993
  • We propose two-degree-of-freedom fuzzy neural network control systems. It has a hierarchical structure of two sets of control knowledge, thus it is easy to extract and refine fuzzy rules before and after the operation has started, and the number of fuzzy rules is reduced. In addition an example application of automatic vehicle operation is reported and its usefulness is shown simulation.

  • PDF

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

계층적 형태의 Convolutional Neural Network를 이용한 의료영상 분류 알고리즘 (Medical Image Classification based on Hierarchical CNN Model)

  • 이상혁;한종기
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.248-249
    • /
    • 2018
  • 본 논문에서는 고해상도 자궁 내막 세포들을 대상으로 정상세포와 이상세포들을 구별하기 위한 알고리즘을 제안한다. 구체적으로 계층적 구조를 갖는 Convolutional Neural Network (CNN) 모델을 기반으로 네 가지 세포들을 구분하는 알고리즘을 제안한다. 이 연구에서 고해상도 영상을 분류하면서도 복잡도 증가를 막기 위해 효율적인 전처리 과정을 사용하였다. 다양한 컴퓨터 실험을 통하여 제안하는 기술을 사용할 때, 인식률이 향상되는 것을 확인할 수 있었다.

  • PDF

Neural network-based generation of artificial spatially variable earthquakes ground motions

  • Ghaffarzadeh, Hossein;Izadi, Mohammad Mahdi;Talebian, Nima
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.509-525
    • /
    • 2013
  • In this paper, learning capabilities of two types of Arterial Neural Networks, namely hierarchical neural networks and Generalized Regression Neural Network were used in a two-stage approach to develop a method for generating spatial varying accelerograms from acceleration response spectra and a distance parameter in which generated accelerogram is desired. Data collected from closely spaced arrays of seismographs in SMART-1 array were used to train neural networks. The generated accelerograms from the proposed method can be used for multiple support excitations analysis of structures that their supports undergo different motions during an earthquake.

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향 (Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing)

  • 조은영;온진호;김재열;차규일
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.34-50
    • /
    • 2023
  • Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the information in a logical qubit. Recent research on quantum error decoding has been focused on developing conventional and neural-network-based decoding algorithms to satisfy accuracy, speed, and scalability requirements. Although conventional decoding methods have notably improved accuracy in short codes, they face many challenges regarding speed and scalability in long codes. To overcome such problems, machine learning has been extensively applied to neural-network-based error decoding with meaningful results. Nevertheless, when using neural-network-based decoders alone, the learning cost grows exponentially with the code size. To prevent this problem, hierarchical error decoding has been devised by combining conventional and neural-network-based decoders. In addition, research on quantum error decoding is aimed at reducing the spacetime decoding cost and solving the backlog problem caused by decoding delays when using hardware-implemented decoders in cryogenic environments. We review the latest research trends in decoders for quantum error correction with high accuracy, neural-network-based quantum error decoders with high speed and scalability, and hardware-based quantum error decoders implemented in real qubit operating environments.