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ABSTRACT

We propose two-degree-of-freedom fuzzy neural network
control systems. It has a hierarchical structure of two sets of
control knowledge, thus it is easy to extract and refine fuzzy
rules before and after the operation has started, and the
number of fuzzy rules is reduced. In addition an example
application of automatic vehicle operation is reported and its

usefulness is shown by simulation.

1. INTRODUCTION

According to expert knowledge, to achieve intelligent
control for varying dynamic characteristics and many
purposes of control by means of synthesizing basic operation,
we need not only the most suitable steady-state control
knowledge defined by the dynamic characteristics of the
plant, but also control knowledge for changing the reference
patierns defined by the control purpose. But to express that
control knowledge by means of a round robin combination,
we have to write down a huge number of fuzzy rules [1],{2]
that express complex conditions in the if-part and
corresponding operations in the then-part. Moreover,
appropriate operation knowledge corresponding to each
condition is not always accurate and it is difficult to extract
the control knowledge from experts before starting the
operation.[3],(4]

Also, due to interference from fuzzy rules that have similar
conditions, it can be difficult to refine the control knowledge
after the operation has started.

To achieve the control purposes of a plant with dynamic
characteristics which vary widely, we propose two-degree-of-
freedom fuzzy necural network control systems. It has a
hierarchical structure of two sets of control knowledge, thus it
is easy to extract and refine fuzzy rules before and after the
operation has started, and the number of fuzzy rules is
reduced.

In addition an example application of automatic vehicle
operation is reported and its usefulness is shown by
simulation.

2. TWO-DEGREE-OF-FREEDOM FUZZY NEURAL
NETWORK CONTROL SYSTEM

Fig.1 (page 4) illustrates the construction of a two-degree-
of-freedom fuzzy neural network control system.

Besides the plant, there are two main parts to this system.
One is a reference generator part that generates adequate

reference patterns according to control purposes of the plant,
the other is a stable controller part that puts out optimal
actuating values according to the dynamic characteristics of
the plant.

The reference generator part is consists of n pieces of
reference generators (functions), a reference synthesizer, a
purpose estimator, a fuzzy associative memory system and a
reference gencrating rule trainer. Each reference gencrator i
(i=1, 2, 3..n) puts out the typical reference pattern
corresponding to its control purpose and the reference
synthesizer interpolates them to make a general reference
pattern which is suitable for the present control purpose. The
purpose estimator calculates adequate performance indices to
estimate the present control purpose. From these performance
indices, the fuzzy associative memory system infers the
parameter scts for each reference generator and the weight
values of the reflerence synthesizer. The reference generating
rule trainer refines the reference function sclecting rules and
the reference parameter tuning rules.

The fuzzy associative memory system has if-part
membership functions, associative memories and a weight
value and parameter synthesizer. Fuzzy inference is realized
by means of memorizing the reference generating rules in the
associative memory., .

The stable controller part is basically the same structure as
the reference generator part.

The two degree of freedom fuzzy neural network control
system has several merits: The two sets of hierarchical
control rules are independent and thus combination rules are
not necessary. The fuzzy rules can be extracted from just the
typical control purpose and the steady state conditions. Also,
after the opcration has started, it is easy to refine the rules.
These merits make it easy to design a control system of this
sort.,

We now present equations in order to describe the system
in more detail.

The reference generators are linear or non-linear functions
that have several parameters. These are given by

ri=fiPay) (=123 ). 8]

Where 1} is the reference value according to each control
purpose, fy is a linear or non-linear function, P,; represents
the parameter sets, Y represents the state variables of the
plant. (Boldface type denotes vector quantities.)

The reference synthesizer multiplies each reference value
by a corresponding weight value Wy and adds all the
reference values up, yielding r*

r'=) ., Wari. @)
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The purpose estimator calculates the performance indices

Uit Jrp) so the reference generators (functions) can be
selected and the reference function parameters can be fixed.

The fuzzy associative memory calculates the certainty
value of each fuzzy label from the if-part membership
functions, then draws an inference to decide the activation of
the associative memory &ti according to a set of reference
function selecting rules such as

Rule 1: if J;¢ is Ly then r*=f;(P,,y) with Cy,

Rule n: if Jyf is Lyfq then r*=f(P;,y) with Cig,,. 3)

Where Ly is a fuzzy labe! and Cyq uses a value (€[0,1])
representing the connection rate between the reference

function f() and the optimum reference function f ().

The fuzzy associative memory also draws an inference to
decide the activation api for each function’s parameter
according to the set of reference parameter tuning rules.

Finally the weight and parameter synthesizer yields the
weight value Wy; and parameter sets P, as follows.

Wa = 26/301 o @
Pr= (X1 aniKs)/| (Tt api)- ®)

The stable controller part produces an activation vector u®
and infers the parameter scts Pc for the stable controllers and
the weight value Wci for each activation value synthesizer, all
in the same manner as the reference generator part.

3. APPLICATION TO THE AUTOMATIC VEHICLE
OPERATION

A transit system [5],[6] is subject to widely varying
external conditions such as weather, the time of day, etc.
Different situations imply different control purposes and the
varying conditions induce fluctuating dynamic characteristics.
Therefore it is difficult to automatically control a vehicle
satisfactorily.

In this paper we apply a two-degree-of-freedom fuzzy
neural network control system to automatic vehicle operation.
The controller's function is to accurately stop a vehicle at a
station. We investigate the controller’s performance with
acceleration error due to changing dynamic characteristics
and with a control purpose transition from velocity control to
position control.

Suppose that the vehicle is moving straight at acceleration
@r. The motion equations for velocity v, position x and time t
of the vehicle are given by

v=0{t-toHvo, ©
x=%a,(t-to)2+vo(t-to)+xo. 7

Where xg,vo are position and velocity at time tg.
From equations (6) and (7), we eliminate the time t and
obtain the equations (8) and (9).

v=+/ 20 {x-x0) +v3, ®

x = (v2-v3}20,, +xo. )

Then we use eq.(8), (9) as reference functions for velocity

and position control respectively.

To estimate the transition of these two controls, we use Ty,
the time remaining until the vehicle has stopped at the station
as the performance index. Equation (10) is derived from (6)
and (7) by replacing xo with x;, setting v to 0, and replacing
t-to by T,.

T, = 2Axs-x) /. (10)

Ty is used 1o switch the control purpose between velocity
control and position control. This is decided by the following
fuzzy rules:

oy = 0Oy
Rule 1: lfTr =TB then V,‘, = 4/ 2a|(X-X0)+V(2) with Crl,
Xy =X
(1; =0y
Rule 2: if T, =TS then{v} = v with Cp.
xx = (v2-v3)20,, +x0
an

Where TB and TS are fuzzy labels, oy, vy, and x; are
acceleration, velocity and position reference for velocity

control, O4,vx.xx are acceleration, velocity and position
reference for position control. This also decides the
activation ag,

The weight values for velocity control W, and position
control Wy are given by

W, =an /(a,1+a,2), (12)
W, = a2 /(ar1+a,2). (13)

The reference synthesizer multiplies the each reference
value by the weight values Wy and W, and sums them up to
make general reference values *,v* and x*

o’ =Wyas+W,ax, (14)
vi=W,vi+W,vs, (15)
x =W xy+ W, x5, (16)

In the stable controller part, we subtract the state variables
v and x from the reference values v* and x* respectively and
compute the errors Av,Ax

Av=v’-v, an
Ax=x*-x. (18)

The characteristic estimator, an acceleration error detector,
calculates the acceleration error Ax from the velocity
reference v* and the detected velocity v.

Each stable controller { (i=1,2,3), adapted to each typical
steady-state, consists of PI-controllers that have proportional
gains Gvpi for velocity control and Gxpi for position control,
integral gainsGyy;,Gyxji, and also have feed-forward gains
Gy6.Gyp; for the reference acceleration .

The fuzzy associative memory infers to decide the

activation i of each controller gain according to the
following rules.
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. Gva=Kva Gxn=Kia

Rule 1: if Aa is AP then GVP1=KVP1 pr1=pr1 with Cq,l,
Gvi=Kvn Gxu=Kin
Gvp=Kvp Gin=Kin

Rule 2; if Ao is AZ then GVP2=KVPZGXP2=KXP2 with Ccp2,
Gviz=Kv Gxp=Kxn2

Gv=Kvp Gxp=Kins
Rule 3: if Ac is AN then { G, p3=Kyp3 Gxp3=K;p3 } With Cqp3.
Gviz=Kvi3 Gxi3=Kx13
19

where AX (X=P, Z, N) is the fuzzy label and

Ky Kxg...Kagi (i=1,2,3) are the constants of each gain. Copi
represents the connection rate between the constants of gains

K.g...Kxx and the optimal gains Kig. K.
The weight synthesizer compose the weight value Wy for
each stable controller by eq.(20).

Wai =2/33 | a: 20)

Then we obtain the actuating value a as follows.

~ 3
0.=2 wa'(GvPiAV‘*'Ginf Avdi+G, o’

i=1

+G‘(PiAx+leif Ath+Gxﬁ(1‘). 21)

When we refine the rules, we add a corrective actuation

value Au, to @ and make the actuating valuc o,. Finally we
convert oy, to a notched actuating value oy and apply on 10
the vehicle.

We refine the the respective controllers by training the
running operaticn, Before learning the operation gain, we use
a gain which is not a good fit for each condition but which is
robustly stable for all conditions.

By the learning algorithm, each uncertain operation gain is
individually trained under the condition and the relationship
between each condition and its operation gain is reinforced.
We use the Widrow-Hoff (1960) learning algorithm to refine
each operation gain under its condition.

The operation error E is given by

E=

T
t=1

2
AU[-AGVH a:—AvalAvl -AGVI]J Avy d[) - min, 2)
2

In (22), Ay, is the training signal of the operator, and

AGy1.AGyp; and AGyy; are the refined values of the stable
controller 1's gain for the velocity control. We would like to

minimize E. AG,p; is given by
AGypr = 30, Auav/T L avl. (23)

We refine each controller's gain in the same fashion as
Gvrr.

4. SIMULATION RESULT
To verify the performance of the control system, we
simulate it according to the following three conditions.
1.The vehicle is controlled only by velocity control
without gain selecting.
2.The vehicle is controlled by both velocity and position
control without gain selecting.

3.The vehicle is controlled by both velocity and position

~ control with gain selecting (proposed sysiem).

In each simulation we give the vehicle an acceleration
error and investigate the stopping position error and the
number of actuating value changes. The initial velocity of the
vehicle is $5km/h. When the vehicle enters the deceleration
section, a force is applied to produce a deceleration of

of=-2.11 [km/h/sec], so that the vehicle can be controlled to
stop at 350(m] from the start point. The running resistance, a

parameter of the vehicle, is T1=2.3+4.8x103v+7.46x104v2
[kgf/ton] and the delay time before starting deceleration is
T4=2.0 [sec]. We produce the vehicle's acceleration error by
changing the vehicle's mass. The gains for each stable
controller are shown in table 1. These gain values were
derived by trial and error.

1 n r's gai
Controller 1 Controller2 Controller 3
Acceleration Acceleration Acceleration

CIror -SQ% erQr ‘)% Error +,3§)%
Kye 140 1.00 0.80
Kyp 0.30 0.20 0.15
K1 0.03 0.02 0.015
Kyt 1.20 1.00 0.80
K,p 2.00 1.60 2.00
Kx1 1.00 0.80 1.00
Position
T error [m]
0.5 Acceleration
, L e
-30 !20 ~;0 . . ox-- D ‘..‘20 ,X. 30
i
s -1
i
,' s
i 21
- Condition | - Condition 2 <* Condition 3

Fig.2 Stopping position error

15 1 The number of
14 1 actuating value
13 + changes

Acceleration
error [%]

10 20 30
- Condition 1 - Conditin 2 -© Condition 3

Fig.3 The number of actuating value changes

Fig.2 shows the stopping point error for acceleration errors
from -30% to +30%.

Under condition 3, the vehicle can stop within an absolute
stopping position error of 0.1 [m]. This is because after
deceleration starts, the gain of the stable controller is adjusted
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to the most suitable value by fuzzy inference according to the
acceleration error. .

Fig.3 shows the number of actuating value changes versus
acceleration error. The number under conditions 2 and 3 is
higher compared to the number under condition 1. Even
though the number of changes has increased, the high gain of
the stable controller keeps the system stable.

Fig.4 shows the transition of velocity, Velocity error,
position, position error and activation value with an
acceleration error of -30% under condition 3. The vehicle
produces a weaker braking force as was expected, resulting in
the velocity error becoming largely negative. The controller
recognizes that the acceleration error is negative and changes
the initial gain into a big gain and increases the actuating
value. Near the stopping point, the more the position
controller puts out the actuating value, the less the velocity
controller does. The transition from velocity control to
position control is smooth.

5. CONCLUSION

We proposed a two-degree-of-freedom fuzzy neural
network control system and we illustrated that it was easy to
extract and refine fuzzy rules before and after the operation
has started, and that the number of fuzzy rules required is
reduced by this technique.

In addition we reported an example application of this
system to automatic vehicle operation and showed that the
vehicle was controlled well in spite of changes in control
purpose and dynamic characteristics.

In this paper, we only simulated the test cases without
learning, but we will execute the simulation and make an
experiment on those cases with learning soon.

REFERENCES

{1]E.H.Mamdani and S.Assilian:"An experiment in linguistic
synthesis with a fuzzy logic controller”,International
Journal of Man-Machine Studies,7,1,pp.1-13(1975).

[2]T. Terano,"Fuzzy System Theory and Its applications”,
1987, Ohbunsha (in Japanese).

[3]T. Yamaguchi et al.:"Intelligent Control of A Flying
Vehicle Using Fuzzy Associative Memory System", IEEE
International Conference on Fuzzy Systems 1992
proc.pp.l139-1149 .

Reference generating rule

.-~ ~Reference function selecting rule =~ =~~=~~=~=~==~-=
Rule 11 if Jris Len then r*=fy (Pr.y) with Cry, H

'\ Rule n: if Jot is Letn then r*=fam(Pe,y) with Com.

Rule 1:if Jrp i Lepy then P=Kp with g1,

Rule n: if Jrp i Lipg then Pe=K gy with Crpa.

.-~~Stable controller selecting rule ~~~~~=>==~~=v=-n ~
Rule 1: if Jegis Lepy then uj=fe; (Pe,y . r*) with Cepy

Rulen: if Jer is Lem then ug=feg(Pe,y,r*) with Cem

Ruie Liflep is Loy then Pe=K) with C

Ruke niit)ep is Lepn then Pe=Keq with Copp

{4)S.Hayashi, "Auto-tuning Fuzzy PI Controller”, IFSA 91,
conf. proc. E1, pp41-44.

[5]H.Takahashi et al. "Subjective Evaluation Modeling Using
Fuzzy Logic And A Neural Network", 3rd IFSA ‘89 cong.
proc. pp.520-523.

[6]1S.Yasunobu, et. al. "Fuzzy Control for Automated Train
Operation System", 4th IFAC/IFIPIIFRS Int. Conf. on
Transportation Systems, pp.39-45(1983).

400 0.4

350 [— 0.3

300 Position L~ ﬂ 02

250 7/ 0.1
Position 200 I

0 Position
{m] /\ /\" error
150 V—V -0.1 [m]
Position error

100 -0.2
o |2

-0.3
o 0.4
H ' H 1 .
i . ' i H
60 . H . 3
p————— (Velocily
50 2
40 \ 1
Velocity 30 Velocity
] w"' 'W\ \ error
20 \ 1 k)
10 Velocity ferror N 2

i) -3
H H Qutputiof both controllers. :

-4

-3
Actuation 2 ./, Y VL
value b Output of frel. ctrl—W fy~
{km//sec] -1 Output of pos. ctrl. ———¥y s

o -

1

0 10 2 30
Time [sec]

Fig. 4 Transition of velocity, velocity error,
position, position error and actuating value

stable controller pan.

)

Fuzzy associative memory

Fuzzy associalive memory ]: j

Member ship

function
ut
M "

Assocunvcma" arp)
O | arf | Weight value

L M~ and parameler
synthesizer

Member ship
function

KX

JAssaciative acp

act | Weight value
pw={ and parameter
synthesizer

e}

‘ch 4 Jep

Reference et
Pufposc generating (}{ulclmslnc
estimator estimator

[

(Y}

Suable conwroller 1

|
i
i
i
1
!
1
i
1
1
1
I
1
i
1
!
rule trainer !
1
1
1
!
1
1
!
!
!
[
I
)
1
!
1
I

Actuating
value
generating
rule trainer

ul

Planm

Actuating value
synthesizer

Fig. 1 Construction of two-degree-of-freedom fuzzy neural network control system
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