• Title/Summary/Keyword: hierarchical classification

Search Result 394, Processing Time 0.03 seconds

A Study on the Relationship between Class Similarity and the Performance of Hierarchical Classification Method in a Text Document Classification Problem (텍스트 문서 분류에서 범주간 유사도와 계층적 분류 방법의 성과 관계 연구)

  • Jang, Soojung;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.77-93
    • /
    • 2020
  • The literature has reported that hierarchical classification methods generally outperform the flat classification methods for a multi-class document classification problem. Unlike the literature that has constructed a class hierarchy, this paper evaluates the performance of hierarchical and flat classification methods under a situation where the class hierarchy is predefined. We conducted numerical evaluations for two data sets; research papers on climate change adaptation technologies in water sector and 20NewsGroup open data set. The evaluation results show that the hierarchical classification method outperforms the flat classification methods under a certain condition, which differs from the literature. The performance of hierarchical classification method over flat classification method depends on class similarities at levels in the class structure. More importantly, the hierarchical classification method works better when the upper level similarity is less that the lower level similarity.

Hierarchical CNN-Based Senary Classification of Steganographic Algorithms (계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류)

  • Kang, Sanhoon;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.

Design and Implementation of Hierarchical Image Classification System for Efficient Image Classification of Objects (효율적인 사물 이미지 분류를 위한 계층적 이미지 분류 체계의 설계 및 구현)

  • You, Taewoo;Kim, Yunuk;Jeong, Hamin;Yoo, Hyunsoo;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • In this paper, we propose a hierarchical image classification scheme for efficient object image classification. In the non-hierarchical image classification, which classifies the existing whole images at one time, it showed that objects with relatively similar shapes are not recognized efficiently. Therefore, in this paper, we introduce the image classification method in the hierarchical structure which attempts to classify object images hierarchically. Also, we introduce to the efficient class structure and algorithms considering the scalability that can occur when a deep learning image classification is applied to an actual system. Such a scheme makes it possible to classify images with a higher degree of confidence in object images having relatively similar shapes.

  • PDF

Effective and Efficient Similarity Measures for Purchase Histories Considering Product Taxonomy

  • Yang, Yu-Jeong;Lee, Ki Yong
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.107-123
    • /
    • 2021
  • In an online shopping site or offline store, products purchased by each customer over time form the purchase history of the customer. Also, in most retailers, products have a product taxonomy, which represents a hierarchical classification of products. Considering the product taxonomy, the lower the level of the category to which two products both belong, the more similar the two products. However, there has been little work on similarity measures for sequences considering a hierarchical classification of elements. In this paper, we propose new similarity measures for purchase histories considering not only the purchase order of products but also the hierarchical classification of products. Unlike the existing methods, where the similarity between two elements in sequences is only 0 or 1 depending on whether two elements are the same or not, the proposed method can assign any real number between 0 and 1 considering the hierarchical classification of elements. We apply this idea to extend three existing representative similarity measures for sequences. We also propose an efficient computation method for the proposed similarity measures. Through various experiments, we show that the proposed method can measure the similarity between purchase histories very effectively and efficiently.

A Hierarchical Classification Method for Verification of Seal Imprint (계층적 분류방식에 의한 인영 검증)

  • 김진희;심재창;현기호;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.904-912
    • /
    • 1991
  • Automatic recognition of seal imprint has been required in the oriental countries. In this paper, a hierarchical approach for seal imprint verification is presented. Global features are used for seal imprint description in the first step. In the second step, conventional and several proposed local features are used to detect useful informations such as size, distribution and relative position of stroke length from seal imprint. In the last step, seal imprints are classified into one of three categories 'accept', 'ambiguous' and reject', based on the hierarchical classification. Experimental results show good performance on classification and recognition.

  • PDF

Hierarchical Priority Trie for Efficient Packet Classification (효율적인 패킷 분류를 위한 계층 우선순위 트라이)

  • Chu, Ha-Neul;Lim, Hye-Sook
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.15-16
    • /
    • 2007
  • In order to provide value-added services, next generation routers should perform packet classification for each incoming packet at wire-speed. In this paper, we proposed hierarchical priority trio (Hptrie) for packet classification. The proposed scheme improves the search performance and the memory requirement by replacing empty internal nodes in ordinary hierarchical trio with priority nodes which are the nodes including the highest priority rule among sub-trie nodes.

  • PDF

Detection of Abnormal Heartbeat using Hierarchical Qassification in ECG (계층구조적 분류모델을 이용한 심전도에서의 비정상 비트 검출)

  • Lee, Do-Hoon;Cho, Baek-Hwan;Park, Kwan-Soo;Song, Soo-Hwa;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.466-476
    • /
    • 2008
  • The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.

Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification (다단계 계층군집 영상분류법을 이용한 토지 피복 분석)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.135-147
    • /
    • 2003
  • This study used the multistage hierarchical clustering image classification to analyze the satellite images for the land-cover types of an area in the Korean peninsula. The multistage algorithm consists of two stages. The first stage performs region-growing segmentation by employing a hierarchical clustering procedure with the restriction that pixels in a cluster must be spatially contiguous, and finally the whole image space is segmented into sub-regions where adjacent regions have different physical properties. Without spatial constraints for merging, the second stage clusters the segments resulting from the previous stage. The image classification of hierarchical clustering, which merges step-by step two small groups into one large one based on the hierarchical structure of digital imagery, generates a hierarchical tree of the relation between the classified regions. The experimental results show that the hierarchical tree has the detailed information on the hierarchical structure of land-use and more detailed spectral information is required for the correct analysis of land-cover types.

Enhancing the Narrow-down Approach to Large-scale Hierarchical Text Classification with Category Path Information

  • Oh, Heung-Seon;Jung, Yuchul
    • Journal of Information Science Theory and Practice
    • /
    • v.5 no.3
    • /
    • pp.31-47
    • /
    • 2017
  • The narrow-down approach, separately composed of search and classification stages, is an effective way of dealing with large-scale hierarchical text classification. Recent approaches introduce methods of incorporating global, local, and path information extracted from web taxonomies in the classification stage. Meanwhile, in the case of utilizing path information, there have been few efforts to address existing limitations and develop more sophisticated methods. In this paper, we propose an expansion method to effectively exploit category path information based on the observation that the existing method is exposed to a term mismatch problem and low discrimination power due to insufficient path information. The key idea of our method is to utilize relevant information not presented on category paths by adding more useful words. We evaluate the effectiveness of our method on state-of-the art narrow-down methods and report the results with in-depth analysis.

Methodology for Classifying Hierarchical Data Using Autoencoder-based Deeply Supervised Network (오토인코더 기반 심층 지도 네트워크를 활용한 계층형 데이터 분류 방법론)

  • Kim, Younha;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.185-207
    • /
    • 2022
  • Recently, with the development of deep learning technology, researches to apply a deep learning algorithm to analyze unstructured data such as text and images are being actively conducted. Text classification has been studied for a long time in academia and industry, and various attempts are being performed to utilize data characteristics to improve classification performance. In particular, a hierarchical relationship of labels has been utilized for hierarchical classification. However, the top-down approach mainly used for hierarchical classification has a limitation that misclassification at a higher level blocks the opportunity for correct classification at a lower level. Therefore, in this study, we propose a methodology for classifying hierarchical data using the autoencoder-based deeply supervised network that high-level classification does not block the low-level classification while considering the hierarchical relationship of labels. The proposed methodology adds a main classifier that predicts a low-level label to the autoencoder's latent variable and an auxiliary classifier that predicts a high-level label to the hidden layer of the autoencoder. As a result of experiments on 22,512 academic papers to evaluate the performance of the proposed methodology, it was confirmed that the proposed model showed superior classification accuracy and F1-score compared to the traditional supervised autoencoder and DNN model.