1 |
Bennett, P. N., & Nguyen, N. (2009). Refined experts: Improving classification in large taxonomies. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 11-18). ACM. Retrieved from http://portal.acm.org/citation.cfm?id=1571946
|
2 |
Broder, A., Ciccolo, P., Gabrilovich, E., Josifovski, V., Metzler, D., Riedel, L., & Yuan, J. (2009). Online expansion of rare queries for sponsored search. In Proceedings of the 18th international conference on World wide web - WWW '09 (pp. 511-520). New York: ACM Press. http://doi.org/10.1145/1526709.1526778
DOI
|
3 |
Broder, A., Fontoura, M., Josifovski, V., & Riedel, L. (2007). A semantic approach to contextual advertising. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '07 (pp. 559-566). New York: ACM Press. http://doi.org/10.1145/1277741.1277837
DOI
|
4 |
Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines categories and subject descriptors. In Proceedings of the thirteenth ACM international conference on Information and knowledge management (pp. 78-87). New York: ACM Press. http://doi.org/10.1145/1031171.1031186
DOI
|
5 |
Cai, L., Zhou, G., Liu, K., & Zhao, J. (2011). Large-scale question classification in cQA by leveraging Wikipedia semantic knowledge. In CIKM'11 (pp. 1321-1330). New York: ACM Press. http://doi.org/10.1145/2063576.2063768
DOI
|
6 |
Wang, X. L., Zhao, H., & Lu, B. L. (2014). A meta-top-down method for large-scale hierarchical classification. IEEE Transactions on Knowledge and Data Engineering, 26(3), 500-513. http://doi.org/10.1109/TKDE.2013.30
DOI
|
7 |
Xue, G. R., Xing, D., Yang, Q., & Yu, Y. (2008). Deep classification in large-scale text hierarchies. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 619-626). New York: ACM Press. http://doi.org/10.1145/1390334.1390440
DOI
|
8 |
Zhai, C., & Lafferty, J. (2004). A study of smoothing methods for language models applied to information retrieval. ACM Transactions on Information Systems, 22(2), 179-214. http://doi.org/10.1145/984321.984322
DOI
|
9 |
Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W., & Ma, W.-Y. (2005). Improving web search results using affinity graph. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 504-511). New York: ACM Press. http://doi.org/10.1145/1076034.1076120
DOI
|
10 |
Zhao, L., & Callan, J. (2012). Automatic term mismatch diagnosis for selective query expansion. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval - SIGIR '12 (pp. 515-524). New York: ACM Press. http://doi.org/10.1145/2348283.2348354
DOI
|
11 |
Na, S. H., Kang, I. S., & Lee, J. H. (2007). Parsimonious translation models for information retrieval. Information Processing and Management, 43(1), 121-145. http://doi.org/10.1016/j.ipm.2006.04.005
DOI
|
12 |
Lafferty, J., & Zhai, C. (2001). Document language models, query models, and risk minimization for information retrieval. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '01 (pp. 111-119). New York: ACM Press. http://doi.org/10.1145/383952.383970
DOI
|
13 |
Liu, T.-Y., Yang, Y., Wan, H., Zeng, H.-J., Chen, Z., & Ma, W.-Y. (2005, June 1). Support vector machines classification with a very large-scale taxonomy. ACM SIGKDD Explorations Newsletter. ACM. http://doi.org/10.1145/1089815.1089821
DOI
|
14 |
McCallum, A., Rosenfeld, R., Mitchell, T. M., & Ng, A. Y. A. Y. (1998). Improving text classification by shrinkage in a hierarchy of classes. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 359-367). Citeseer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.5412&rep=rep1&type=pdf
|
15 |
Oh, H.-S., Choi, Y., & Myaeng, S.-H. (2010). Combining global and local information for enhanced deep classification. In Proceedings of the 2010 ACM Symposium on Applied Computing - SAC '10 (pp. 1760-1767). New York: ACM Press. http://doi.org/10.1145/1774088.1774463
DOI
|
16 |
Oh, H.-S., Choi, Y., & Myaeng, S.-H. (2011). Text classification for a large-scale taxonomy using dynamically mixed local and global models for a node. In Proceedings of the 33rd European conference on Advances in information retrieval (pp. 7-18). Springer. http://doi.org/10.1007/978-3-642-20161-5_4
DOI
|
17 |
Gopal, S., Yang, Y., & Niculescu-mizil, A. (2012). Regularization framework for large scale hierarchical classification. In Large Scale Hierarchical Classification, ECML/PKDD Discovery Challenge Workshop.
|
18 |
Bai, J., Song, D., Bruza, P., Nie, J.-Y., & Cao, G. (2005). Query expansion using term relationships in language models for information retrieval. In Proceedings of the 14th ACM international conference on Information and knowledge management (pp. 688-695). New York: ACM. http://doi.org/10.1145/1099554.1099725
DOI
|
19 |
Custis, T., & Al-Kofahi, K. (2007). A new approach for evaluating query expansion. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '07 (pp. 575-582). New York: ACM Press. http://doi.org/10.1145/1277741.1277840
DOI
|
20 |
Gopal, S., & Yang, Y. (2013). Recursive regularization for large-scale classification with hierarchical and graphical dependencies. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13 (pp. 257-265). New York: ACM Press. http://doi.org/10.1145/2487575.2487644
DOI
|
21 |
Sebastiani, F. (2001). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1-47. http://doi.org/10.1145/505282.505283
DOI
|
22 |
Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 44(1), 1-50. http://doi.org/10.1145/2071389.2071390
DOI
|
23 |
Chan, W., Yang, W., Tang, J., Du, J., Zhou, X., & Wang, W. (2013). Community question topic categorization via hierarchical kernelized classification. In Proceedings of the 22nd ACM international conference on Conference on information & knowledge management - CIKM '13 (pp. 959-968). New York: ACM Press. http://doi.org/10.1145/2505515.2505676
DOI
|
24 |
Schutze, H., & Pedersen, J. O. (1997). A cooccurrence-based thesaurus and two applications to information retrieval. Information Processing & Management, 33(3), 307-318. http://doi.org/10.1016/S0306-4573(96)00068-4
DOI
|
25 |
Sokolov, A., & Ben-Hur, A. (2010). Hierarchical classification of gene ontology terms using the GOstruct method. Journal of Bioinformatics and Computational Biology, 8(2), 357-76. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20401950
DOI
|
26 |
Sun, A. S. A., & Lim, E.-P. L. E.-P. (2001). Hierarchical text classification and evaluation. In Proceedings 2001 IEEE International Conference on Data Mining (pp. 521-528). IEEE Computer Society. http://doi.org/10.1109/ICDM.2001.989560
DOI
|
27 |
Wang, X.-L., & Lu, B.-L. (2010). Flatten hierarchies for large-scale hierarchical text categorization. In 2010 Fifth International Conference on Digital Information Management (ICDIM) (pp. 139-144). IEEE. http://doi.org/10.1109/ICDIM.2010.5664247
DOI
|
28 |
Chen, Y., Xue, G.-R., & Yu, Y. (2008). Advertising keyword suggestion based on concept hierarchy. In Proceedings of the international conference on Web search and web data mining - WSDM '08 (pp. 251-260). New York: ACM Press. http://doi.org/10.1145/1341531.1341564
DOI
|
29 |
Hiemstra, D., Robertson, S., & Zaragoza, H. (2004). Parsimonious language models for information retrieval. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 178-185). New York: ACM Press. http://doi.org/10.1145/1008992.1009025
DOI
|
30 |
Karimzadehgan, M., & Zhai, C. (2010). Estimation of statistical translation models based on mutual information for ad hoc information retrieval. In Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval - SIGIR '10 (pp. 323-330). New York: ACM Press. http://doi.org/10.1145/1835449.1835505
DOI
|
31 |
Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Proceedings of the 4th International Conference on Machine Learning (pp. 170-178). Morgan Kaufmann Publishers Inc. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.2455&rep=rep1&type=pdf
|
32 |
Kurland, O., & Lee, L. (2006). PageRank without hyperlinks: Structural re-ranking using links induced by language models. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '05 (pp. 306-313). New York: ACM Press. http://doi.org/10.1145/1076034.1076087
DOI
|
33 |
Labrou, Y., & Finin, T. (1999). Yahoo! as an ontology. In Proceedings of the eighth international conference on Information and knowledge management - CIKM '99 (pp. 180-187). New York: ACM Press. http://doi.org/10.1145/319950.319976
DOI
|
34 |
Robertson, S., & Walker, S. (1994). Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 232-241). New York: Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=188490.188561
|
35 |
Oh, H.-S., & Jung, Y. (2014). External methods to address limitations of using global information on the narrow-down approach for hierarchical text classification. Journal of Information Science, 40(5), 688-708. http://doi.org/10.1177/0165551514544626
DOI
|
36 |
Oh, H.-S., & Myaeng, S.-H. (2014). Utilizing global and path information with language modelling for hierarchical text classification. Journal of Information Science, 40(2), 127-145. http://doi.org/10.1177/0165551513507415
DOI
|
37 |
Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information retrieval. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '98 (pp. 275-281). New York: ACM Press. http://doi.org/10.1145/290941.291008
DOI
|
38 |
Sasaki, M., & Kita, K. (1998). Rule-based text categorization using hierarchical categories. In IEEE International Conference on Systems, Man, and Cybernetics (Vol. 3, pp. 2827-2830). IEEE. http://doi.org/10.1109/ICSMC.1998.725090
DOI
|