• Title/Summary/Keyword: hidden layer

Search Result 511, Processing Time 0.026 seconds

Adaptive Sliding Mode Control of Nonlinear Systems Using Neural Network and Disturbance Estimation Technique (신경망과 외란 추정 기법을 이용한 비선형 시스템의 적응 슬라이딩 모드 제어)

  • Lee, Jae-Young;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1759-1760
    • /
    • 2008
  • This paper proposes a neural network(NN)-based adaptive sliding mode controller for discrete-time nonlinear systems. By using disturbance estimation technique, a sliding mode controller is designed, which forces the sliding variable to be zero. Then, NN compensator with hidden-layer-to-output-layer weight update rule is combined with sliding mode controller in order to reduce the error of the estimates of both disturbances and nonlinear functions. The whole closed loop system rejects disturbances excellently and is proved to be ultimately uniformly bounded(UUB) provided that certain conditions for design parameters are satisfied.

  • PDF

A Study on the Inverse Calibration of Industrial Robot(AM1) Using Neural Networks (신경회로망을 이용한 산업용 로봇(AM1)의 역보정에 관한 연구)

  • 안인모
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.131-136
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$2$^{\circ}$to $\pm$ 0.1$^{\circ}$.

  • PDF

Nondestructive Sugar Content Measurement in Apple by Nir Spectrum Analysis using Neural Network

  • Lee, S.H.;Noh, S.H.;Kim, W.G.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.325-333
    • /
    • 1996
  • This study was conducted to develop neural networks of predicting the sugar content of fruits based on the optical densities obtained from a spectrophotometer. Pear, apple and peach were used in investigating the feasbility of the developed neural networks as a nondestructive measurement. A spectrophotometer was used to measure the optical densities of test fruits. The neural networks suggested in this study consisted of multi-layers having one hidden layer and one output layer. The correlation coefficients between the predicted and the measured sugar content for most fruits were high. The neural networks using 2nd derivatives of optical density spectrum produced a better results in predicting the sugar content of fruits. This study contributed to develop a method for nondestructively predicting the sugar content of fruits.

  • PDF

Functional Classification of Myoelectric Signals Using Neural Network for a Artificial Arm Control Strategy (인공팔 제어를 위한 근전신호의 신경회로망을 이용한 기능분석)

  • 손재현;홍성우;남문현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1027-1035
    • /
    • 1994
  • This paper aims to make an artificial arm control strategy. For this, we propose a new feature extraction method and design artificial neural network for the functional classification of myoelectric signal(MES). We first transform the two channel myoelectric signals (MES) for biceps and triceps into frequency domain using fast Fourier transform (FFT). And features were obtained by comparing the magnitudes of ensemble spectrum data and used as inputs to the three-layer neural network for the learning. By changing the number of units in hidden layer of neural network we observed the improvement of classification performance. To observe the effeciency of the proposed scheme we performed experiments for classification of six arm functions to the three subjects. And we obtained on average 94[%] the ratio of classification.

Nonlinear system control using neural network (신경회로망을 이용한 비선형 시스템 제어)

  • 성홍석;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.32-39
    • /
    • 1996
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with multilayer neural network. The multilayer neural netowrk can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate unknown nonlinear function on the nonlinear system by using of multilayer neural netowrk. The weights on the hidden layer of multilayer neural network are updated by gradient method. The weight-update rule on the output layer is derived to satisfy lyapunov stability. Also, we obtain secondary controller form deriving step. The global control system consists of controller using feedback linearization method and secondary controller is order to satisfy layapunov stability. The proposed control algorithm is verified through computer simulation.

  • PDF

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.

Inverse Calibration of a Robot Manipulator Using Neural Network (뉴럴 네트워크를 이용한 로봇 매니퓰레이터의 역보정)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • The robot inverse calibration method using a neural networks is proposed in this paper. A high-order networks has been used in this study. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the selected compliance automatic robot arm type direct drive robot and anthropomorphic robot are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from ${\pm}$0.15$^{\circ}$to ${\pm}$0.12$^{\circ}$.

  • PDF

A study on the realization of color printed material check using Error Back-Propagation rule (오류 역전파법으로구현한 컬러 인쇄물 검사에 관한 연구)

  • 한희석;이규영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.560-567
    • /
    • 1998
  • This paper concerned about a imputed color printed material image in camera to decrease noise and distortion by processing median filtering with input image to identical condition. Also this paper proposed the way of compares a normal printed material with an abnormal printed material color tone with trained a learning of the error back-propagation to block classification by extracting five place from identical block(3${\times}$3) of color printed material R, G, B value. As a representative algorithm of multi-layer perceptron the error Back-propagation technique used to solve complex problems. However, the Error Back-propagation is algorithm which basically used a gradient descent method which can be converged to local minimum and the Back Propagation train include problems, and that may converge in a local minimum rather than get a global minimum. The network structure appropriate for a given problem. In this paper, a good result is obtained by improve initial condition and adjust th number of hidden layer to solve the problem of real time process, learning and train.

  • PDF

Deep-learning based In-situ Monitoring and Prediction System for the Organic Light Emitting Diode

  • Park, Il-Hoo;Cho, Hyeran;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.126-129
    • /
    • 2020
  • We introduce a lifetime assessment technique using deep learning algorithm with complex electrical parameters such as resistivity, permittivity, impedance parameters as integrated indicators for predicting the degradation of the organic molecules. The evaluation system consists of fully automated in-situ measurement system and multiple layer perceptron learning system with five hidden layers and 1011 perceptra in each layer. Prediction accuracies are calculated and compared depending on the physical feature, learning hyperparameters. 62.5% of full time-series data are used for training and its prediction accuracy is estimated as r-square value of 0.99. Remaining 37.5% of the data are used for testing with prediction accuracy of 0.95. With k-fold cross-validation, the stability to the instantaneous changes in the measured data is also improved.

Toward Sentiment Analysis Based on Deep Learning with Keyword Detection in a Financial Report (재무 보고서의 키워드 검출 기반 딥러닝 감성분석 기법)

  • Jo, Dongsik;Kim, Daewhan;Shin, Yoojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.670-673
    • /
    • 2020
  • Recent advances in artificial intelligence have allowed for easier sentiment analysis (e.g. positive or negative forecast) of documents such as a finance reports. In this paper, we investigate a method to apply text mining techniques to extract in the financial report using deep learning, and propose an accounting model for the effects of sentiment values in financial information. For sentiment analysis with keyword detection in the financial report, we suggest the input layer with extracted keywords, hidden layers by learned weights, and the output layer in terms of sentiment scores. Our approaches can help more effective strategy for potential investors as a professional guideline using sentiment values.