• Title/Summary/Keyword: heterogeneous nucleation

Search Result 63, Processing Time 0.026 seconds

Properties, Structure and Crystallization of Poly Lactic Acid/Zinc Oxide Pillared Organic Saponite Nanocomposites (폴리락틱산/산화아연 기둥구조의 유기사포나이트 나노복합체의 특성, 구조 및 결정화)

  • Zhen, Weijun;Sun, Jinlu
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.299-306
    • /
    • 2014
  • ZnO pillared saponite was synthesized via a microwave hydrolysis method. To enhance interfacial compatibility between zinc oxide (ZnO) pillared saponite and poly lactic acid (PLA), ZnO pillared organic saponite was prepared by intercalation modification of cetyltrimethylammonium bromide. Moreover, PLA/ZnO pillared organic saponite nanocomposites were prepared by melting processing. The microstructure analysis of PLA/ZnO pillared organic saponite nanocomposites showed that ZnO pillared organic saponite was exfoliated and homogeneouslydispersed in PLA matrix. The property results showed that ZnO pillared organic saponite improved the mechanical properties and thermal stabilities of PLA/ZnO pillared organic saponite nanocomposites. Differential scanning calorimetry (DSC) demonstrated that ZnO pillared organic saponite restrained the appearance of cold crystallization, lowered the glass transition temperature and melting temperature of PLA, and improved the crystallinity of PLA. The results demonstrated that ZnO pillared organic saponite had a good interfacial compatibility and heterogeneous nucleation effect in PLA matrix, and also played an active role in accelerating the crystallization process of PLA.

MAS NMR and XRD Study on the Vanadium Site pf Vanadium Silicate Mesoporous Molecular Sieve MCM-41

  • 박동호;Chi-Feng Cheng;Jacek Klinowski
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.70-75
    • /
    • 1997
  • A wide range (10 < Si/V) of mesoporous vanadium silicate molecular sieves with the MCM-41 structure have been synthesized using vanadyl sulfate as the source of vanadium and characterized by XRD, 51V MAS NMR and 29Si MAS NMR. The increase of the unit cell parameter and the decrease of Q3/Q4 ratio of 29Si spectra with the vanadium content suggest the incorporation of vanadium in the framework of MCM-41 structure. 51V MAS NMR demonstrates that vanadiums in as-synthesized V-MCM-41 are present in the chemical environment of octahedra and octahedral vanadium is decreased and tetrahedral vanadium is increased inversely with raising the calcination temperature. Though the thermal treatment in rotor of hydrated sample resulted in the change from tetrahedral environment to octahedral one and the steaming and the acid treatment affect to the chemical environment of vanadium, the spectrum similar to originally calcined sample is regenerated after recalcination. This indicates that the vanadium is belong to the framework in a relatively exposed site. The best quality XRD pattern of the product of Si/V=27 may be attributable to heterogeneous nucleation mechanism. V-MCM-41's having the Si/V ratio lower than 20 are completely collapsed after calcination.

Dynamic Precipitation and Substructure Stablility of Cu Alloy during High Temperature Deformation

  • Han, Chang-Suk;Choi, Dong-Nyeok;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.343-348
    • /
    • 2019
  • Structural and mechanical effects of the dynamical precipitation in two copper-base alloys have been investigated over a wide range of deformation temperatures. Basing upon the information gained during the experiment, also some general conclusion may be formulated. A one concerns the nature of dynamic precipitation(DP). Under this term it is commonly understood decomposition of a supersaturated solid solution during plastic straining. The process may, however, proceed in two different ways. It may be a homogeneous one from the point of view of distribution and morphological aspect of particles or it may lead to substantial difference in shape, size and particles distribution. The effect is controlled by the mode of deformation. Hence it seems to be reasonable to distinguish DP during homogeneous deformation from that which takes place in heterogeneously deformed alloy. In the first case the process can be analyzed solely in terms of particle-dislocation-particle interrelation. Much more complex problem we are facing in heterogeneously deforming alloy. Deformation bands and specific arrangement of dislocations in form of pile-ups at grain boundaries generate additional driving force and additional nucleation sites for precipitation. Along with heterogeneous precipitation, there is a homogeneous precipitation in areas between bands of coarse slip which also deform but at much smaller rate. This form of decomposition is responsible for a specially high hardening rate during high temperature straining and for thermally stable product of the decomposition of alloy.

Surface Modification of Bentonite for the Improvement of Radionuclide Sorption

  • Hong, Seokju;Kim, Jueun;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Bentonite is the most probable candidate to be used as a buffer in a deep geological repository with high swelling properties, hydraulic conductivity, thermal conductivity, and radionuclide sorption ability. Among them, the radionuclide sorption ability prevents or delays the transport of radionuclides into the nearby environment when an accident occurs and the radionuclide leaks from the canister, so it needs to be strengthened in terms of long-term disposal safety. Here, we proposed a surface modification method in which some inorganic additives were added to form NaP zeolite on the surface of the bentonite yielded at Yeonil, South Korea. We confirmed that the NaP zeolite was well-formed on the bentonite surface, which also increased the sorption efficiency of Cs and Sr from groundwater conditions. Both NaP and NaX zeolite can be produced and we have demonstrated that the generation mechanism of NaX and NaP is due to the number of homogeneous/heterogeneous nucleation sites and the number of nutrients supplied from an aluminosilicate gel during the surface modification process. This study showed the potential of surface modification on bentonite to enhance the safety of deep geological radioactive waste repository by improving the radionuclide sorption ability of bentonite.

Growth of Nanocrystalline Diamond on W and Ti Films (W 및 Ti 박막 위에서 나노결정질 다이아몬드의 성장 거동)

  • Park, Dong-Bae;Myung, Jae-Woo;Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.145-152
    • /
    • 2013
  • The growth behavior of nanocrystalline diamond (NCD) film has been studied for three different substrates, i.e. bare Si wafer, 1 ${\mu}m$ thick W and Ti films deposited on Si wafer by DC sputter. The surface roughness values of the substrates measured by AFM were Si < W < Ti. After ultrasonic seeding treatment using nanometer sized diamond powder, surface roughness remained as Si < W < Ti. The contact angles of the substrates were Si ($56^{\circ}$) > W ($31^{\circ}$) > Ti ($0^{\circ}$). During deposition in the microwave plasma CVD system, NCD particles were formed and evolved to film. For the first 0.5h, the values of NCD particle density were measured as Si < W < Ti. Since the energy barrier for heterogeneous nucleation is proportional to the contact angle of the substrate, the initial nucleus or particle densities are believed to be Si < W < Ti. Meanwhile, the NCD growth rate up to 2 h was W > Si > Ti. In the case of W substrate, NCD particles were coalesced and evolved to the film in the short time of 0.5 h, which could be attributed to the fact that the diffusion of carbon species on W substrate was fast. The slower diffusion of carbon on Si substrate is believed to be the reason for slower film growth than on W substrate. The surface of Ti substrate was observed as a vertically aligned needle shape. The NCD particle formed on the top of a Ti needle should be coalesced with the particle on the nearby needle by carbon diffusion. In this case, the diffusion length is longer than that of Si or W substrate which shows a relatively flat surface. This results in a slow growth rate of NCD on Ti substrate. As deposition time is prolonged, NCD particles grow with carbon species attached from the plasma and coalesce with nearby particles, leaving many voids in NCD/Ti interface. The low adhesion of NCD films on Ti substrate is related to the void structure of NCD/Ti interface.

Seed-dependent Accelerated Fibrillation of ${\alpha}$-Synuclein Induced by Periodic Ultrasonication Treatment

  • Kim, Hyun-Jin;Chatani, Eri;Goto, Yuji;Paik, Seung-R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2027-2032
    • /
    • 2007
  • [ ${\alpha}$ ]-Synuclein is the major component of Lewy bodies and responsible for the amyloid deposits observed in Parkinson's disease. Ordered filamentous aggregate formation of the natively unfolded ${\alpha}$-synuclein was investigated in vitro with the periodic ultrasonication. The ultrasonication induced the fibrillation of ${\alpha}$-synuclein, as the random structure gradually converted into a ${\beta}$-sheet structure. The resulting fibrils obtained at the stationary phase appeared heterogeneous in their size distribution, with the average length and height of $0.28\;{\mu}m{\pm}0.21\;{\mu}m$ and $5.6\;nm{\pm}1.9\;nm$, respectively. After additional extensive ultrasonication in the absence of monomeric ${\alpha}$-synuclein, the equilibrium between the fibril formation and its breakdown shifted to the disintegration of the preexisting fibrils. The resulting fragments served as nucleation centers for the subsequent seed-dependent accelerated fibrillation under a quiescent incubation condition. This self-seeding amplification process depended on the seed formation and subsequent alterations in their properties by the ultrasonication to a state that accretes the monomeric soluble protein more effectively than their reassociation of the seeds back to the original fibrils. Since many neurodegenerative disorders have been considered to be propagated via the seed-dependent amyloidosis, this study would provide a novel aspect of the significance of the seed structure and its properties leading to the acce]erated amyloid formation.

A Research on Reflectivity of Microcellular Polypropylene (MCPs의 반사 특성에 관한 연구)

  • Seo Jung-Hwan;Cha Sung-W.;Kim Hak-Bin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1367-1370
    • /
    • 2005
  • Microcellular foam processing of polymers requires a nucleated cell density greater than $10^9\;cells/cm^3$ so that the fully grown cells are smaller than 10 mm. A microcellular foam can be developed by first saturating a polymer sample with a volatile blowing agent, followed by rapidly decreasing its solubility in the polymer. In general, the cellular structure of crystalline polymer foams is difficult to control, compared to that of amorphous polymer foams. Since the gas does not dissolved in the crystallites, the polymer/gas solution formed during the microcellular processing is nonuniform. Moreover, the bubble nucleation is nonhomogeneous because of the heterogeneous nature of the crystalline polymer. In this paper, the effects of the crystallinity and morphology of crystalline polymers on the microcellular foam processing and on reflectivity of products are investigated. First, polymer specimens with various morphology and amount of solved blowing agent were prepared by varying the saturation pressure, saturation time and foaming condition. Then, cell morphologies according to several conditions were studied. The specimens with differing gas amount of solved and morphologies were foamed and their cellular structures were compared. The experimental results of reflectivity are compared to raw specimen and another specimen of different experimental conditions. After the experiments, recognize whether how reflectivity changes according to solved gas amount. And the effect of cell density and cell size on reflectivity is studied

  • PDF

Quasicrystals And Related Approximant Phases in Mg-Zn-Y (Mg-Zn-Y 합금에서 준결정 및 준결정 유사상)

  • Park, Eun-Soo;Ok, Jae-Bum;Kim, Won-Tae;Kim, Do-Hyang
    • Applied Microscopy
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • As-cast microstructure of Mg-rich $Mg_{68}Zn_{28}Y_4$ has been investigated by a detailed transmission electron microscopy. The as-cast $Mg_{68}Zn_{28}Y_4$ alloy consisted of three different types of phases: $10{\sim}20{\mu}m$ size primary solidification phase, dendritic phase grown from the primary phase and a eutectic structure formed at the later stage of solidification. The primary solidification phase has an icosahedral structure with a large degree of phason strain. 1/1 rhombohedral approximant phase with lattice parameters: $a=27.2{\AA}\;and\;{\alpha}=63.43^{\circ}$ is first observed in Mg-Zn-Y system. The rhombohedral structure can be obtained by introducing phason strain in the six dimensional face centered hyper-cubic lattice. The decagonal phase nucleates with orientation relationship with the icosahedral phase, and $Mg_4Zn_7$ nucleates with orientation relationship with the decagonal phase, indicating a close structural similarity between the three phases. Gradual depletion of Y during solidification plays an important role in heterogeneous nucleation of decagonal and $Mg_4Zn_7$ phases from icosahedral and decagonal phases respectively.

Pretreatment Condition of Cu by Ammonium-Based Mixed Solvent and Its Effects on the Fabrication of Ag-Coated Cu Particles (Ag 도금 Cu 입자의 제조에서 암모늄 기반 혼합 용매를 사용한 Cu 입자의 전처리 조건과 이의 영향)

  • Lee, Hee Bum;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.109-116
    • /
    • 2016
  • To achieve the fabrication of high-quality Ag-coated Cu particles through a wet chemical process, we reported herein pretreatment conditions using an ammonium-based mixed solvent for the removal of a $Cu_2O$ layer on Cu particles that were oxidized in air for 1 hr at $200^{\circ}C$ or for 3 days at room temperature. Furthermore, we discussed the results of post-Ag plating with respect to removal level of the oxide layer. X-ray diffraction results revealed that the removal rate of the oxide layer is directly proportional to the concentration of the pretreatment solvent. With the results of Auger electron spectroscopy using oxidized Cu plates, the concentrations required to completely remove 50-nm-thick and 2-nm-thick oxides within 5 min were determined to be X2.5 and X0.13. However, the optimal concentrations in an actual Ag plating process using Cu powder increased to X0.4 and X0.5, respectively, because the oxidation in powder may be accelerated and the complete removal of oxide should be tuned to the thickest oxide layer among all the particles. Back-scattered electron images showed the formation of pure fine Ag particles instead of a uniform and smooth Ag coating in the Ag plating performed after incomplete removal of the oxide layer, indicating that the remaining oxide layer obstructs heterogeneous nucleation and plating by reduced Ag atoms.

Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu;Deri Zhou;Weimin Chai;Lee, Byeongdu;Le, Seung-Woo;Jinhwan Yoon;Moonhor Ree
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.