• 제목/요약/키워드: heterogeneous material modeling

검색결과 20건 처리시간 0.025초

임의 형상의 복합재 모델링을 위한 CSG 기반 표현 (CSG-based Representation for Free-form Heterogeneous Object Modeling)

  • 신기훈;이진구
    • 한국CDE학회논문집
    • /
    • 제11권4호
    • /
    • pp.235-245
    • /
    • 2006
  • This paper proposes a CSG-based representation scheme for heterogeneous objects including multi-material objects and Functionally Graded Materials (FGMs). In particular, this scheme focuses on the construction of complicated heterogeneous objects guaranteeing desired material continuities at all the interfaces. In order to create various types of heterogeneous primitives, we first describe methods for specifying material composition functions such as geometry-independent, geometry-dependent functions. Constructive Material Composition (CMC) and corresponding heterogeneous Boolean Operators (e.g. material union, difference, intersection. and partition) are then proposed to illustrate how material continuities are dealt with. Finally, we describe the model hierarchy and data structure for computer representation. Even though the proposed scheme alone is sufficient for modeling all sorts of heterogeneous objects, the proposed scheme adopts a hybrid representation between CSG and decomposition. That is because hybrid representation can avoid the unnecessary growth of binary trees.

R-function을 이용한 형상의 음함수 모델링 및 해석 (Geometric Implicit Function Modeling and Analysis Using R-functions)

  • 신헌주;신동우;김태완
    • 한국CDE학회논문집
    • /
    • 제12권3호
    • /
    • pp.220-232
    • /
    • 2007
  • Current geometric modeling and analysis are commonly based on B-Rep modeling and a finite elements method respectively. Furthermore, it is difficult to represent an object whose material property is heterogeneous using the B-Rep method because the B-Rep is basically used for homogeneous models. In addition, meshes are required to analyze a property of a model when the finite elements method is applied. However, the process of generating meshes from B-Rep is cumbersome and sometimes difficult especially when the model is deformed as time goes by because the topology of deforming meshes are changed. To overcome those problems in modeling and analysis including homogeneous and heterogeneous materials, we suggest a unified modeling and analysis method based on implicit representation of the model using R-function which is suggested by Rvachev. For implicit modeling of an object a distance field is approximated and blended for a complex object. Using the implicit function mesh-free analysis is possible where meshes are not necessary. Generally mesh-free analysis requires heavy computational cost compared to a finite elements method. To improve the computing time of function evaluation, we utilize GPU programming. Finally, we give an example of a simple pipe design problem and show modeling and analysis process using our unified modeling and analysis method.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • 한국도로학회논문집
    • /
    • 제8권1호
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Material feature representation and identification with composite surfacelets

  • Huang, Wei;Wang, Yan;Rosen, David W.
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.370-384
    • /
    • 2016
  • Computer-aided materials design requires new modeling approaches to characterize and represent fine-grained geometric structures and material compositions at multiple scales. Recently, a dual-Rep approach was developed to model materials microstructures based on a new basis function, called surfacelet. As a combination of implicit surface and wavelets, surfacelets can efficiently identify and represent planar, cylindrical, and ellipsoidal geometries in material microstructures and describe the distribution of compositions and properties. In this paper, these primitive surfacelets are extended and composite surfacelets are proposed to model more complex geometries. Composite surfacelets are constructed by Boolean operations on the primitives. The surfacelet transform is applied to match geometric features in three-dimensional images. The composition of the material near the identified features can then be modeled. A cubic surfacelet and a v-joint surfacelet are developed to demonstrate the reverse engineering process of retrieving material compositions from material images.

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제15권9호
    • /
    • pp.10-14
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure flow rate input power density) and a various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimizations.

  • PDF

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure, flow rate, input power density) and various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimization.

  • PDF

설계 저장소에시의 지식 관리 기법 (Knowledge Management Methodology in Design Repository)

  • 엄광호;강무진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.73-74
    • /
    • 2006
  • Design repository is considered an effective method to manage a set of heterogeneous design knowledge. In this paper, methodologies for modeling and managing different types of design knowledge - ontology for mold design task as well as mold components, rule bases, and library containing standard parts, material property, molding condition, etc. - in a design repository are described.

  • PDF

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.