• Title/Summary/Keyword: herbicidal response

Search Result 31, Processing Time 0.029 seconds

Effect of Seeding Depth on the Growth, Mesocotyl Elongation and Herbicidal Response of Rice and Barnyardgrass (파종심도(播種深度)에 따른 벼와 피의 생장(生長), 중경(中莖) 신장(伸長) 및 제초제반응(除草劑反應) 차이(差異))

  • Chon, Sang-Uk;Guh, Ja-Ock
    • Korean Journal of Weed Science
    • /
    • v.15 no.1
    • /
    • pp.19-29
    • /
    • 1995
  • The effect of seeding depth on the growth, mesocotyl elongation and herbicidal response of rice(Oryza sativa L., Japonica type, cv. "Tongjin") and barnyardgrass(Echinochloa crus-galli Beauv. var orizicola Ohwi.) were studied in greenhouse experiments. Barnyardgrass growth as affected by different water depths was briefly tested. Rice and barnyardgrass were broadcast in soil into Oem, 1cm, 2cm and 3cm in seeding depth under dry direct-seeded condition. Butachlor(N-(buthoxymethyl)-2-chloro-N-(2,6-diethylphenyl) acetamide) at dose rate of 1800g ai/ha and thiobencarb(S-[(4-chlorophenyl)methyl] diethyl carbamothioate) at dose rate of 2100g and 4200g ai/ha were soil applied to them at 5 days after seeding. At 10 days after seeding, plants harvested to examine their growth as affected by seeding depth. Root length and shoot fresh weight of rice untreated was greatest in 1cm- and 3cm-seeding depth, respectively, however, mesocotyl did not elongate. While plant height of barnyardgrass grew regardless of seeding depth and water depth, but root length was greatest in 1cm-seeding depth of dry condition and reduced with increased water depth. And mesocotyl was elongated in only dry condition and its length increased with increased seeding depth. At 10 days after application thiobencarb applied pre-emergence inhibited plant height, and shoot fresh weight of rice in only 0cm-seeding depth under dry condition whereas was unaffected in above 1cm-seeding depth, similar to untreated control, and ever increased root length and root fresh weight of rice. On the other hand, shoot, root and leaf growth of barnyardgrass was, severely inhibited regardless of application rates and seeding depths. Reduction of shoot growth by treatment of herbicide was significantly greater than that of root growth. Consequently, reduction of barnyardgrass growth by treatment of thiobencarb did not be associated with seeding depth and mesocotyl elongation as affected by different seeding depth.

  • PDF

Determination of Factors Affecting Injury of Pepper Cultivars to Napropamide and Pendimethalin (고추에서 Napropamide 및 Pendimethalin에 대한 약해요인(藥害要因) 구명(究明))

  • Kim, M.H.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.321-328
    • /
    • 1987
  • In order to examine the factors affecting herbicidal injury of pepper, crop injury and growth response of 2 red pepper cultivars and 2 sweet pepper cultivars to napropamide and pendimethalin were evaluated under defferent conditions of soil texture, organic matter, soil temperature and seeding depth in the greenhouse. Growth response of 4 pepper cultivars was also examined by roos dipping to napropamide and pendimethalin. More inhibition of top leaf growth by root dipping to napropamide was occurred in red pepper cultivars than in sweet pepper cultivars. However, sweet pepper cultivars showed more severe inhibition of top leaf growth by root dipping to pendimethalin compared to red pepper cultivars. Crop injury due to napropamide and pendimethalin was more severe in sandy soil than in loam soil and this trend was more remarkably shown in sweet pepper cultivars. Crop injury due to napropamide and pendimethalin was reduced with the increase in organic matter especially in cv. Walgeykwan and cv. Orient al Pimento. As seeding depth of pepper cultivars became deeper, crop injury due to napropamide and pendimethalin was reduced in cv. Walgyekwan and cv. Oriental Pimento.

  • PDF

Response of domestically collected Echinochloa species to cyhalofop-butyl and pyribenzoxim herbicides, their absorption and translocation (국내 피 수집종에 대한 cyhalofop-butyl과 pyribenzoxim의 약제반응 및 흡수이행)

  • Lee, In-Yong;Park, Jae-Eup;Park, Tae-Seon;Kim, Kil-Ung
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • To investigate the physiological and biochemical differences between susceptible and tolerant species of Echinochloa species to the foliar applied cyhalofop-butyl and pyribenzoxim herbicides, herbicidal response, the rate of absorption, translocation and metabolism were studied. Among 148 individuals of Echinochloa species collected from 41 sampling sites in Korea which were classified into 7 geographical regions, based on morphological characteristics of plant and seed type, 46 lines were used for further studies. From them, E. crus-galli var. praticola collected from Hwanggan and E. crus-galli var. crus-galli collected from Namyangju were selected as the most susceptible species to cyhalofop-butyl and pyribenzoxim, respectively. Meanwhile, E. oryzicola(from Cheju) and E. crus-galli var. crus-galli(from Asan) were selected as tolerant species to cyhalofop-butyl and pyribenzoxim, respectively. Application of radio-labelled herbicides on the 1st leaf to both susceptible and tolerant Echinochloa species exhibited that the applied $^{14}C$-Cyhalofop-butyl and $^{14}C$-pyribenzoxim were more easily absorbed and translocated into stem tissues than root. Absorption of $^{14}C$-Cyhalofop-butyl increased rapidly at 1 h after application and reached the maximum at 12 h after application. However, the absorption rate of $^{14}C$-pyribenzoxim was not changed. Two metabolites from cyhalofop-butyl-treated plants and one metabolite from pyribenzoxim-treated plants were separated by TLC. The amount of metabolite 1 in cyhalofop-butyl-treated tolerant species was significantly higher than that in the susceptible one, suggesting differences in detoxification ability between susceptible and tolerant species.

  • PDF

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF

Study on the Behaviour of Mixtures of Herbicides in Transplanted Lowland Rice Field (논잡초방제용(雜草防除用) 제초제(除草劑)의 혼합효과(混合效果)에 관한 연구(硏究))

  • Kim, S.C.;Choi, C.D.;Lee, S.K.
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 1983
  • The behaviour of mixtures of herbicides was determined to obtain the basic informations about effective herbicide use, enhancing herbicidal efficacy and reducing the chemical cost. Fourteen herbicides with 91 mixed combinations were evaluated by Limpel et al method at the Echinochloa crus galli Beauv-Monochuria vaginalis Presl.-Scirpus hotarui Ohwi (importance values of these weeds were 63%, 16% and 10%, respectively) community type. Thirty eight mixed combinations showed the antagonistic response. Among these 14 mixed combinations including chlormethoxynil + naproanilide mixture were greater than 11% in antagonistic effect. On the other hand, 40 mixed combinations including chlormethoxynil + SW751 mixture showed additive response (${\pm}2%$). For synergistic response, 13 mixed combinations were belonged to this group. Particularly, 3 mixed combinations, chlormethoxynil + butachlor, chlormethoxynil + bifenox and nitrofen + ACN/MCPB/nitrofen mixtures were greater than 11% in synergistic effects. The mixture of thiobencarb + oxyfluorfen was analyzed by isobole technique. This mixture showed the synergistic response and the interaction index was approximately 2. The most optimum mixtur for inducing 90%n weed suppression was 0.012 kg ai/ha for oxyfluorfen and 0.45 kg ai/ha for thiobencarb.

  • PDF

Response of Phytotoxicity on Rice Varieties to HPPD-inhibiting Herbicides in Paddy Rice Fields (HPPD 저해 제초제에 대한 벼 품종별 약해 반응)

  • Kwon, Oh-Do;Shin, Seo-Ho;An, Kyu-Nam;Lee, Yeen;Min, Hyun-Kyeng;Park, Heung-Gyu;Shin, Hae-Ryoung;Jung, Ha-Il;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.32 no.3
    • /
    • pp.240-255
    • /
    • 2012
  • The objectives of this study were to investigate the levels of phytotoxicity of rice varieties to HPPD (4-hydroxy phenylpyruvate dioxygenase)-inhibiting herbicides known for their efficiency to control the sulfonylureas-resistant weed species:mestrione, benzobicyclone, and tefuryltrione. The twenty-six rice varieties (8-Japonica ${\times}$ Indica-type varieties and 18-Japonica-type varieties) were grown for 25 days on seedling trays and then transplanted to paddy rice fields followed by herbicide treatment i.e. standard and double doses of there respective herbicides at 5, 10, and 15 days after transplanting. Although mestrione, benzobicyclone and tefuryltrione are all HPPD-inhibiting herbicides, the phytotoxicity symptoms of the different rice varieties based on the timing of application and doses of the herbicides were significantly different. The Japonica ${\times}$ Indica-type varieties showed much more phytotoxicity symptoms than Japonica-type varieties in all applied herbicides. Increasing herbicidal doses of mesotrione, and an earlier application of and increasing herbicidal doses of benzobicyclon caused severe phytotoxicity symptoms. On the other hand, phytotoxicity due to tefuryltrione did not exhibit significant differences between rice varieties in either the timing of application or dose of the herbicide. Regardless of timing of application and dose of the herbicides, Hangangchalbyeo-1, Hyangmibyeo-1 and high-yield rice varieties such as Namcheonbyeo, Dasanbyeo, Areumbyeo, and Hanareumbyeo, which belong to the Japonica ${\times}$ Indica-type varieties, showed 5 to 8 levels of phytotoxicity symptoms including albinism, browning, detached leaf, and necrosis to mesotrione and benzobicyclon whereas only 1 to 3 levels of phytotoxicity symptoms (chlorosis, albinism, and browning) were seen with to tefuryltrione application. The Japonica-type varieties exhibited only slight phytotoxicity symptoms (1~2 levels) in conformity with the timing of application and doses of the herbicides. However, there were significant differences among the Japonica-type rice varieties, depending on the type of herbicide. Thirteen-Japonica type rice varieties were sensitive to benzobicyclone while 4-Japonica-type and 7-Japonica-type varieties showed phytotoxicity symptoms such as chlorosis and albinism with mestrione and tefuryltrione application, respectively. Therefore, we suggest that the combined-type herbicides including mestrione, benzobicyclone and tefuryltrione should be rejected in paddy fields where rice is grown for either human consumption (functional or processed rice) or livestock feed because of severe phytotoxicity symptoms on the various rice varieties seen regardless of the timing of application and doses of the herbicides.

Physiological Effects of TOPE, a Photo - independent Diphenylether, on Higher Plants (비광요구형 디페닐에테르계 TOPE 의 생리적 작용에 관한 연구)

  • Kim, J.S.;Cho, K.Y.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.160-170
    • /
    • 1996
  • Several physiological responses were investigated in plants treated with TOPE as a preliminary step to know its action site. Unlike photo-dependent diphenylethers, herbicidal activity of TOPE appeared slowly and its typical symptoms were both burning of leaf blades and abnormal division of meristem in grasses, Similarly, both leakage of cell electrolytes and the curling of cotyledon margin were also shown in cucumber(Cucumis sativus L.). Biosynthesis of chlorophyll in etiolated cucumber cotyledon was not inhibited directly by treatment of TOPE at low light intensity(5.5${\mu}$ mol $m^{-2}s^{-1}$ PAR) and protoporphyrin IX was not also accumulated. The contents of phytoene, phytofluene and ${\beta}$-carotene were abnormaly increased. Photosynthesis was inhibited only at high concentration. Mitochondrial respiration was inhibited at high concentration but rather increased significantly at 10${\mu}$M of TOPE. However, respiration inhibitors did not alleviate the two symptoms of TOPE in cucumber cotyledon. In the same experiments, using inhibitors of protein or nucleic acid biosynthesis, only one of the two symptoms was alleviated by chloramphenicol and cycloheximide. In contrast, both symptoms were alleviated by actinomycin-D and hydroxyurea, suggesting that nucleic acid metabolism might be preferentially related to the mode of action of TOPE. DNA, RNA and protein contents were accumulated in both cucumber cotyledon and rice (Oryza sativa L.) routs treated with TOPE, and the DNA of them was increased at first. Thus, it is conjectured that TOPE increase nucleic acid metabolism directly or indirectly, and then disturb various metabolic pathways causing abnormal physiological and morphological effects followed by final death.

  • PDF

Resistance to ACCase Inhibitor Cyhalofop-butyl in Echinochloa oryzicola Collected in Gyeongsangnam-do Province of Korea (ACCase 저해 제초제 cyhalofop-butyl에 대한 경남지방 수집종 피의 저항성)

  • Won, Jong Chan;Won, Ok Jae;Ha, Jun;Im, Il-Bin;Kang, Kwang Sik;Pyon, Jong Yeong;Park, Kee Woong;Lee, Jeung Joo
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.166-169
    • /
    • 2018
  • Repeated use of ACCase inhibiting herbicides for a long time has resulted in increases of resistant Echinochloa oryzicola populations in paddy fields in middle west area of Korea. This study aims to investigate current status of herbicide resistant E. oryzicola in Gyeongsangnam-do, in which there is less information about herbicide resistance. For resistance frequency and dose-response study, seeds from 100 individual plants of E. oryzicola in Gyeongsangnam-do were collected and tested with cyhalofop-butyl. Seven percent of plants from Gyeongsangnam-do was resistant at a recommended rate of cyhalofop-butyl. $GR_{50}$ values (herbicide rates required to reduce plant growth 50%) for one representative resistant populations and five susceptible populations were $738g\;a.i.\;ha^{-1}$ and 66-234 (average 147)$g\;a.i.\;ha^{-1}$, respectively, indicating average 5 times difference in resistance. Although lower rate of frequency of herbicide resistance in Gyeongsangnam-do than in Jeollabuk-do, increases of herbicide resistance are expected in this area because of increases of direct seeded rice fields and increases of dependence on a specific herbicide. Therefore, it is necessary to monitor herbicide resistance regularly and conduct integrated herbicide resistance management in this area.

Antagonistic Mode of Action of Fenoxaprop-P-ethyl Phytotoxicity with Bentazon (Fenoxaprop-P-ethyl의 제초활성에 대한 Bentazon의 길항작용기구)

  • Ma, S.Y.;Kim, S.W.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 1998
  • Antagonistic mode of action of fenoxaprop-P-ethyl [ethyl(R)2-4-{(6-chloro-2-benzoxazolyloxy) phenoxy}propionate] with bentazon was investigated with respect to absorption, translocation, metabolism, and change in target site response of fenoxaprop-P-ethyl using four-leaf stage of rice(Oryza sativa L.) and barnyardgrass [Echinochloa eras-galli (L.) P. Beauv.]. Shoots of rice and barnyardgrass was more sensitive to fenoxaprop-P-ethyl than the roots. More than 90% of fenoxaprop-P-ethyl was absorbed within 6 hours after treatment and 30% of the absorbed was acropetally and basipetally translocated at 24 hours after treatment. Fenoxaprop-P-ethyl was rapidly transformed to its acid form, fenoxaprop(2-[4-(6-chloro-2-benzoxazolyloxy)phenoxy]propionic acid), which was subsequently metabolized to polar conjugates. However, changes in absorption, translocation, and metabolism of fenoxaprop-P-ethyl by bentazon treatment were not found in both species. Background activity of acetyl-CoA carboxylase(ACCase) in rice and barnyardgrass was 26.5 and 23.2nmol/min/mg, respectively. Concentration required to inhibit fifty percent enzyme activity$(I_{50})$ in vitro was 6.5~7.4${\mu}M$ of fenoxaprop-P-ethyl and more than 500${\mu}M$ of bentazon. There were no significant differences in $I_{50}$ value between two treatments of fenoxaprop-P-ethyl alone and its bentazon mixture. However, bentazon reduced ACCase activity in vivo and inhibited electron transport in chloroplast thylakoid. Based on the results obtained, it is concluded that the antagonistic effect of bentazon occurs due not to direct effect on target site of fenoxaprop-P-ethyl, but to indirect involvement in reducing herbicidal activity of fenoxaprop-P-ethyl through physiological disturbances caused by bentazone at whole chloroplast level.

  • PDF

Herbicidal and Antifungal Activities of the aqueous extracts of Persicaria longiseta (개여뀌의 제초 및 항균활성 탐색)

  • Choi, Go-Bong;Woo, Seong-Bae;Song, Jin-Young;Kang, Jeong-Hwan;Kim, Tae-Keun;Kim, Hyoun-Chol;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • The study researched germination of the plants and growth of Fungus according to concentration of aqueous extracts in order to provide basic data for developing natural agricultural resources by using Persicaria longiseta. The seed germination of Amaranthus spinosus was inhibited at 25% P. longiseta extract, while Agrostis stolonifera ssp. palustris was not affected at all concentrations tested. Especially, the seed germination rate and fresh weight of Trifolium incarnatum at 20% P. blumei extract were higher than those of control plot. The early growth of most receptor plant seedlings was promoted at 25% and 50% of P. blumei extracts, but the radicle growth of all receptor plants was significantly inhibited at > 25% of P. longiseta extract. The response of receptor plants to P. longiseta extract was different according to the plant species and the plant parts. The growth of plant pathogenic fungus in PDA medium showed an increasing inhibition tendency with increasing concentrations of P. longiseta extract. Especially, P. longiseta extract showed the greatest antimicrobial activity against Phytophthora infestans, Phythium graminicola, and Pythium venterpoolii. The content of total phenolic compound in P. longiseta was higher in leaves (1082.3 mg/L) but lower in roots (228.6 mg/L) and stems (207.8 mg/L), which is an allelopathic chemical. As these results are summarized, P. longiseta have competitive advantage because they release phenolic compounds with allelopathic effect and affect on germination, growth and fungi growth on underground flora compared to native plants and they have eligibility for natural herbicide and germicide.