DOI QR코드

DOI QR Code

Herbicidal and Antifungal Activities of the aqueous extracts of Persicaria longiseta

개여뀌의 제초 및 항균활성 탐색

  • Received : 2015.03.30
  • Accepted : 2015.07.30
  • Published : 2015.09.30

Abstract

The study researched germination of the plants and growth of Fungus according to concentration of aqueous extracts in order to provide basic data for developing natural agricultural resources by using Persicaria longiseta. The seed germination of Amaranthus spinosus was inhibited at 25% P. longiseta extract, while Agrostis stolonifera ssp. palustris was not affected at all concentrations tested. Especially, the seed germination rate and fresh weight of Trifolium incarnatum at 20% P. blumei extract were higher than those of control plot. The early growth of most receptor plant seedlings was promoted at 25% and 50% of P. blumei extracts, but the radicle growth of all receptor plants was significantly inhibited at > 25% of P. longiseta extract. The response of receptor plants to P. longiseta extract was different according to the plant species and the plant parts. The growth of plant pathogenic fungus in PDA medium showed an increasing inhibition tendency with increasing concentrations of P. longiseta extract. Especially, P. longiseta extract showed the greatest antimicrobial activity against Phytophthora infestans, Phythium graminicola, and Pythium venterpoolii. The content of total phenolic compound in P. longiseta was higher in leaves (1082.3 mg/L) but lower in roots (228.6 mg/L) and stems (207.8 mg/L), which is an allelopathic chemical. As these results are summarized, P. longiseta have competitive advantage because they release phenolic compounds with allelopathic effect and affect on germination, growth and fungi growth on underground flora compared to native plants and they have eligibility for natural herbicide and germicide.

본 연구는 개여뀌를 이용하여 친환경 농자재로 개발하기 위한 기초자료를 제공하기 위해 수용성 추출액의 농도에 따른 수용체 식물의 발아 및 유식물 생장과 실험 병원균의 생장을 조사하였다. 개여뀌 추출물에 대한 발아효과 실험결과, 개여뀌의 수용성 추출액 처리 시 가시비름의 발아율은 25%에서 억제되었으나, 벤트그라스의 발아율은 추출액의 농도에 따라 차이가 없었으며, 특히 개여뀌의 추출액 농도 25%가 처리된 크림슨 클로버의 종자발아와 생체량은 대조구보다 촉진되었다. 개여뀌추출액에 의한 대부분 수용체 식물의 초기생장은 25%, 50%농도에서 촉진되었으나, 유근은 모든 농도에서 현저하게 억제되었다. 즉, 수용체식물의 종류와 부위에 따라 억제정도의 차이를 보였다. 몇 가지 식물병원균에 대한 실험결과 개여뀌 수용성 추출액의 농도가 증가함에 따라 억제되는 경향을 보였으며, 특히 Phytophthora infestans, Pythium graminicola, Pythium venterpoolii의 균사생장을 강하게 억제시켰다. 식물체 부위별 개여뀌의 총 페놀함량을 조사한 결과 잎(1082.3 mg/l)에서 가장 많았으며 뿌리(228.6 mg/l), 줄기(207.8 mg/l) 순이었다. 이들 결과를 종합하면 개여뀌는 타식물과 경쟁을 함에 있어 allelopathy 효과를 나타내는 페놀 화합물 등이 수관 내 토양으로 방출하여 하부식생에 대한 발아 및 생장과 토양미생물 생장 등에 영향을 주기 때문에 경쟁적 우위를 점하고 있으며, 천연제초제, 살균제로서의 활용 가능성을 가지고 있는 것으로 판단된다.

Keywords

References

  1. Barz, W. 1990. Phytoalexins as part of induced defence reactions in plants: thier elicitation, function and matabolism in Bioactive Compounda from Plants. Ciba Foundation Symposium 154. John Wiley Sons, Chichester. pp. 140-152.
  2. Chon, S. U., D. I. Kim, and Y. S. Choi. 2003. Assessments on insecticidal and fungicidal activities by aerial part extracts from several Compositae plants. Kor. J. Weed Sci. 23(2): 81-91.
  3. Coolbear, P., A. Francis, and D. Grierson. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 35: 1609-1617. https://doi.org/10.1093/jxb/35.11.1609
  4. Costilow, R. N. 1981. Biophysical factors in growth. In: Mannual of methods for general bacteriology. Gerhardt, P. American Society for Microbiology. Washington, DC. pp. 66-78.
  5. Duke, S. O. 1986. Naturally occuring chemical compounds as herbicides. Rev. Weed Sci. 2: 17-44.
  6. Duke, S. O., J. G. Romagni, and F. E. Dayan. 2000. Natural products as sources for new mechanisms of herbicidal action. Crop Protect. 19: 583-589. https://doi.org/10.1016/S0261-2194(00)00076-4
  7. Gordon, A. G. 1971. The germination resistance test-a new test for measuring germination quality of cereals. Canadian Journal of Plant Science. 51: 181-183. https://doi.org/10.4141/cjps71-036
  8. Graham, H. D. 1992. Modified prussian blue assay for total phenol compound. J. Agric. Food Chem. 40: 801-807. https://doi.org/10.1021/jf00017a018
  9. Hazebroek, J. P., S. A. Garrison, and T. Gianfagna, 1989. Allelopathic substances in asparagus roots: extraction, characterization, and biological activity. Journal of the American Society for Horticultural Science.
  10. Heisey, R. M. 1990. Allelopathic and herbicidal effects of extracts from tree of heaven (Ailantus altissima). Amer. J. Bot. 77(5): 662-670. https://doi.org/10.2307/2444812
  11. Inderjit. 1996. Plant phenolics in allelopathy. Bot. Rev. 62: 186-201. https://doi.org/10.1007/BF02857921
  12. ISOFAR. 2014. International symposium on the development of korean organic agriculture & industry. IOSFAR Korea. pp. 73-110.
  13. Kang, J. H., H. C. Kim, S. B. Woo, J. Y. Song, T. K. Kim, J. Y. Kang, Y. S. Ha, and C. K. Song. 2008. Allelopathic effects of Amaranthus spinosus L. for improvement of natural herbicide. Korean J. Organic Agri. 16(1): 127-142.
  14. Kil, B. S. 1988. Allelopathic effect of Pinus rigida Mill. Korean J. Ecol. 11(2): 65-76.
  15. Kil, B. S. 1999. Allelopathic Effects of Artemisie capillaris on the selected species. Korean J. Ecol. 22(1): 59-36
  16. Kim, C. G., H. K. Jeong, and D. H. Moon. 2012. Production and Consumption Statud and Market Prospects for Environment-Friendly Agri-foods. KREI Policy Research Paper. p. 157.
  17. Kim, J. H. 1997. Variation of monoterpenoids in Artemisia feddei and Artemisia scoparia. J. Plant Bio. 40: 267-274. https://doi.org/10.1007/BF03030459
  18. Kim, K. W. and D. G. Lee. 2007. Screening of herbicidal and fungicidal activities from resource plants in Korea. Kor. J. Weed Sci. 27(3): 285-295.
  19. Kim, S. M. 2006. Herbicidal Activity of Korean Native Plants (IV). The Korean Journal of Pesticide Sci. 10(3): 225-229.
  20. Kim, Y. O. and H. J. Lee. 1996. Identification and Effects of Phenolic Compounds from Some Plants. Korean J. Ecol. 19(4): 329-340.
  21. Kim, Y. O., H. J. Lee, E. S. Kim, and Y. D. Cho, 1995. Effect of leaf extract from pinus rigida on morphological changes of root tips. Kor. J. Plant Biol. 38(1): 75-82.
  22. Kim, Y. O., S. H. Kim, H. J. Lee, and M. Y. Eun, 1990. Allelopathic effects of leaf extract of Pinus rigida Mill. on the seeds germination of Raphanus sativus var. hortensis for acanthiformis Makino. The Korean Journal of Ecology. 13(2): 75-82
  23. Lee, C. W. 2000. Recent Research Trends on Allelopathy in Japan. Korean J. Weed Sci. 20(1): 60-66.
  24. Lee, H. B., S. M. Lee, H. J. Kwon, K. S. Hong, J. S. Kim, K. Y. Cho and C. J. Kim. 2003. Evaluation of plant-derived compounds as natural herbicidal agent. Kor. J. Weed Sci. 23(2): 135-142.
  25. Lee, H. J., Y. O. Kim, and N. K. Chang, 1997. Allelopathic effects on seed germination and fungus growth from the secreting substances of some plants. Kor. J. Ecol., 20(3): 181-189.
  26. Lee, T. B. 1980. Illustrated flora of korea. Haynagmunsa. Seoul, Korea.(inKorean)
  27. Lee, Y. S., M. S. Kim, S. H. Lim, S. J. Heo, S. B. Kwon, and D. S. Park 2004. Herbicidal activity of Korean native plants. Kor. J. Weed Sci. 24(2): 103-113.
  28. Lodhi, M. A. K. and E. L. Rice 1971. Allelopathic effects of Celtis laevigata. Bull. Torrey Bot. Club 98: 83-89. https://doi.org/10.2307/2483771
  29. Lovett, J. V., M. Y. Ryuntyu, and P. R Garlick. 1987. Allelopathic effects of thomapple (Datura stramonium L.). Proc. 8th Aust. Weeds Conf., Sydney, pp. 179-181.
  30. Mersie, M. and M. Singh. 1987. Allelopathic effect of Parthenium (Parthenium hysterophorus L.) extract and residue on some agronomic crops and weeds. J. Chem. Ecol. 13(7): 1739-1747. https://doi.org/10.1007/BF00980214
  31. Miles, D. H. 1991. A search for agrochemicals from peruvian plants in Naturally Occuring Pest Bioregulators. ed. by. P. A. Hedin. ACS Sympoium Series No. 449. Washington D. C. pp. 399-406.
  32. Osborn, T. C., D. C. Alexander, S. S. M. Sun, C. Cardona, and F. A. Bliss. 1988. Insecticicidal activity and lectin homology of arcelin seed protein. Science. 240: 207-210. https://doi.org/10.1126/science.240.4849.207
  33. Pardates, J. R. and A. G. Dingal. 1988. An allelopathic factor in taro residues. Trop. Agric. 65(1): 21-24.
  34. Putnam, A. R. 1988. Allelochemicals from plant as herbicides. Wee Tech. 2: 510-518. https://doi.org/10.1017/S0890037X00032371
  35. Rice, E. L. 1984. Allelopathy (Second Edition), Academic Press, Inc. orlanddo, Florida, pp. 1-103, 231-361.
  36. Scott, S. J., R. A. Jones, and W. A. Williams, 1984. Review of data analysis methods for seed germination. Crop Science. 24: 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x
  37. Snook, M. E., O. T. Chortyk, and A. S. Csinos. 1991. Black shank disease fungus: Inhibition of growth by tabacco root cinstituents and related compounds in Naturally Occuring Pest Bioregulators.ed. by P.A Hedin. ACS Sympoium Series No.449 Washington D.C. pp. 388-398.
  38. Wink, M. 1987. Chemical ecology of quinolizidine alkaloids, in allelochemicals: Role in agriculture, forestry and ecology (ed. Walier, G. R.). ACS Symp. Ser. 330, Amer. Chem. Soc., Washington, DC. pp. 524-533.
  39. Woo, S. W. and K. U. Kim. 1987. Identification of Allelopathic Substances from Polygonum hydropiper and Polygonum aviculare. Kor. J. Weed Sci. 7(2): 144-155.
  40. Yu, C. H., I. S. Jeon, I. M. Chung, J. H. Hur, and E. H. Kim. 1995. The Allelopathic effect of Alfalfa residues on rops and Weeds. Kor. J. Weed. Sci. 15(2): 131-140.
  41. Yun, K. W. and M. A. Maun. 1997. Allelopathic potential of Artemisia campestris ssp. caudata on lake Huron sand dunes. Can. J. Bot. 75: 1903-1912. https://doi.org/10.1139/b97-902