• Title/Summary/Keyword: hepatic cell damage

Search Result 92, Processing Time 0.026 seconds

Attenuation of Hepatic Graft-versus-host Disease in Allogeneic Recipients of MyD88-deficient Donor Bone Marrow

  • Lim, Ji-Young;Lee, Young-Kwan;Lee, Sung-Eun;Ju, Ji-Min;Park, Gyeongsin;Choi, Eun Young;Min, Chang-Ki
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.125-134
    • /
    • 2015
  • Acute graft-versus-host-disease (GVHD) is characterized by selective damage to the liver, the skin, and the gastrointestinal tract. Following allogeneic hematopoietic stem cell transplantation, donor bone marrow (BM) cells repopulate the immune system of the recipient. We previously demonstrated that the acute intestinal GVHD (iGVHD) mortality rate was higher in MyD88-deficient BM recipients than that in the control BM recipients. In the present study, the role of MyD88 (expressed by donor BM) in the pathophysiology of hepatic GVHD (hGVHD) was examined. Unlike iGVHD, transplantation with MyD88-deficient T-cell depleted (TCD) BM attenuated hGVHD severity and was associated with low infiltration of T cells into the liver of the recipients. Moreover, GVHD hosts, transplanted with MyD88-deficient TCD BM, exhibited markedly reduced expansion of $CD11b^+Gr-1^+$ myeloidderived suppressor cells (MDSC) in the liver. Adoptive injection of the MDSC from wild type mice, but not MyD88-deficient mice, enhanced hepatic T cell infiltration in the MyD88-deficient TCD BM recipients. Pre-treatment of BM donors with LPS increased MDSC levels in the liver of allogeneic wild type BM recipients. In conclusion, hGVHD and iGVHD may occur through various mechanisms based on the presence of MyD88 in the non-T cell compartment of the allograft.

Extracts and Enzymatic Hydrolysates Derived from Sea Cucumber Stichopus japonicas Ameliorate Hepatic Injury in BisphenolA-treated Mice (비스페놀A 유도 간 손상 마우스에서 해삼(Stichopus japonicas) 추출물 및 가수분해물의 간 기능 개선 효과)

  • Sejeong, Kim;Yun-Ho, Jo;Bi-Oh, Park;Dae-Seok, Yoo;Doo-Ho, Kim;Min-Jung, Kim;Youn-Gil, Kwak;Jin-Seong, Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • This study aimed to investigate the hepatoprotective activities of the sea cucumber products, including extracts and hydrolysates, in vitro and in vivo. Dried sea cucumber, produced on the western coast of Korea, was boiled in water or 70% ethanol at 85℃ or 100℃ for 18 or 24 h, respectively, to extract bioactive compounds. The enzymatic hydrolysates were prepared by reacting the dried sea cucumber with pepsin or neutral protease (PNL) under optimal enzyme conditions. The anti-inflammatory effect of the samples was investigated using RAW 264.7 cells treated with lipopolysaccharide (LPS). The amount of nitric oxide (NO) was produced from the cells treated with LPS and each sample was compared. Therefore, the pepsin hydrolysate treatment decreased NO production compared to LPS sole treatment. Furthermore, the effects of the samples on cell injury in the hepatic cell line and bisphenolA-induced hepatic injury mouse model were investigated. The water extracts and the pepsin hydrolysates of sea cucumber significantly inhibited cell injury generated in the hepatocytes without cytotoxicity (p < 0.05), whereas the ethanol extracts were cytotoxic. However, these results indicate that the extracts and the enzymatic hydrolysates derived from sea cucumber can be used as beneficial materials for inhibiting liver damage.

The Therapeutic Effect of Artemisia Capillaris Extract on Hepatic Damage Induced by Carbon Tetrachloride in Rats (흰쥐에서 사염화탄소 투여로 유발된 간 손상에 대한 인진쑥 추출물의 치료효과)

  • Lee Sang-Gwan
    • Journal of Veterinary Clinics
    • /
    • v.22 no.3
    • /
    • pp.206-213
    • /
    • 2005
  • This experiment was conducted to find out the therapeutic effect of Artemisia capillaris extracts on hepatic damage in rats induced by carbon tetrachloride ($CCl_{4}$). In this experiment, 96 Sprague-Dawley rats were used as experimental groups, which were divided into 4 groups; control group(A), $CCl_{4}$-treated group(B), $CCl_{4}$+Artemisia extract-treated group(C) and $CCl_{4}$+silymarin-treated group(D). The B, C, D group were administrated single dose of $CCl_{4}$(2.5 ml/kg) to induce acute hepatic injury. C group was administrated with Artemisia capillaris extract(200 mg/kg/day) and D group treated with silymarin(50 mg/kg/day) for 7 days. Hematological, ultrasonographical, histological examinations and examination of antioxidant activity were also performed in all groups. AST and ALT activities of C group were significantly decreased compared with B group. The activities of AST and ALT in C and D groups returned to the normal range more rapidly than those of B group. In ultrasonographic examination, the echogenicity of liver in C group was significantly decreased compared with B group. Also C and D group had tended to recover faster than B group on liver histogram. Histologically, the percentage of degenerative regions and degenerative cell numbers in peri-central vein hepatic parenchyma of C and D group were significantly decreased compared with B group. In examination of lipid peroxidation, malondialdehyde of hepatic tissue in C group was decreased as compared with B group. In examination of antioxidant enzyme activity in liver, glutathione peroxidase and catalase activities were significantly increased compared with B group. As results of this study, it is thought that A. capillaris extract has therapeutic effects on hepatic injury induced by carbon tetrachloride, and has the similar therapeutic effects as silymarin in rats.

The Effects of Chungganhaeju-Tang on glutathione synthesis in HepG2 cell (청간해주탕(淸肝解酒湯)이 인체간세포의 Glutathione 생성에 미치는 영향)

  • Yoon Yeo-Kwang;Lee Jang-Hoon;Woo Hong-Jung;Kim Young-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.81-91
    • /
    • 2004
  • Objectives : The aim of this study is to investigate the inhibitory effect of Chungganhaeju-Tang on alcohol induced human hepatic cell apoptosis by synthesis of glutathione. Methods : The amount of glutathione in HepG2 cell was measured with colorimetric glutathione assay kit and glutathione-conjugated CDNB(1-chloro-2,4-dinitrobenzene) at $37^{\circ}C$ and then measured by spectrometry to assess the activity of glutathione S-transferase. Results : The synthesis of glutathione and the activity of glutathione S-transferase in HepG2 cell were promoted by Chungganhaeju-Tang and increased in dose/time-dependent manner. Chungganhaeju-Tang inhibited apoptosis induced by ethanol and acetaldehyde dependent to treatment dosage. In Buthione sulfoximine, a glutathione synthesis inhibitor, treated case, the synthesis of glutathione was inhibited and in Chungganhaeju-Tang treated case, the synthesis of glutathione is promoted with or without Buthione sulfoximine. The present findings suggest that Chungganhaeju-Tang inhibits alcohol induced apoptosis by synthesis of glutathione in HepG2 cell. Conclusions : The result indicates that Chungganhaeju-Tang protects human hepatic cell by glutathione synthesis and made the liver recover from alcohol induced damage.

  • PDF

The Effect of Hepatic Ischemia and Reperfusion on Energy Metabolism in Rats

  • Jeong Cheol;Cho, Tai-Soon;Lee, Sun-Mee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.97-97
    • /
    • 1997
  • It was reported that ATP depletion occurs and accelerates cell damage during ischemia and reperfusion. To determine the mechanism of cell damage, the change of energy metabolism in liver was studied during ischemia/reperfusion. The groups were divided into four categories : sham-operated group, ischemia/reperfusion group, and two types of ATP-MgCl$_2$ treatment groups(one was treated during ischemia and the another during reperfusion). Rats were administered intravenously saline or ATP-MgCl$_2$. Rats were anesthetized and blood vessels in the left and median lobes of the liver were occluded. After 60min of ischemia, the clamp at those vessels were removed. After ischemia, one and five hours after reflow, energy metabolites(ATP, ADP, AMP, inosine, adenosine, hypoxanthine, xanthine) in liver were measured with HPLC. To observe mitochondrial function, aterial keton body ratio in blood and mitochondrial glutamate dehydrogenase activity in liver were measured. And lipid peroxidation was measured to evalutate the involvement of free radicals. In this study, ATP and ADP were catabolized to their metabolites(AMP, inosine, adenosine, hypoxanthine, xanthine) during ischemia and they resynthesized ATP and ADP during reperfusion. But total purine base were not restored to level of normal rat. The main source of resynthesizing ATP and ADP was AMP. In both ATP-MgCl$_2$ treated groups, mitochondrial function was protected and lipid peroxidation was significantly reduced. Our findings suggest that ischemia/reperfusion impairs hepatic energy metabolism.

  • PDF

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.

Effect of Carbon Tetrachloride Administration on the Serum and Liver Xanthine Oxidase Activity in Ethanol-Pretreated Rats (Ethanol을 전처리한 흰쥐의 간 및 혈청 Xanthine Oxidase 활성에 미치는 사염화탄소의 영향)

  • 윤종국;김병렬;이상일
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.69-77
    • /
    • 1993
  • In the present study, the comparison of liver damage in carbon tetrachloride (CCl$_4$)-treated rats with that those pretreated with ethanol and an effect of liver injury on the serum and liver xanthine oxidase (XOD) activity were evaluated. The increasing rate of liver weight per body wt., the levels of serum alanine aminotransferase, and the decreasing rate of hepatic glucose-6-phosphatase activity and the protein contents in the liver cell were higher in carbon tetrachloride-treated animals pretreated with ethanol than the carbon tetrachloride-treated group. Especially, the histopathological findings also showed more severe liver damage in the ethanol-pretreated rats than the rats treated with carbon tetrachloride only. In such a experimental condition the xanthine oxidase activity of serum and liver both of carbon tetrachloride-treated rats and those pretreated with ethanol were higher than that of each control group. And the increasing rate of xanthine oxidase enzyme activity to the control group was higher in carbon tetrachloride-treated group pretreated with ethanol than those treated with CCl$_4$. In addition, the heptic uricase activity and the serum levels of uric acid were more increased in carbon tetrachloride-treated group pretreated with ethanol than those in the CCl$_4$-treated rats. On the other hand, there were no statistical differences in hepatic catalase and glutathione S-transferase activities between the CCl$_4$-treated rats and those pretreated with ethanol. In conclusion, it is assumed that the more severe liver damage in ethanol pretreated rats would be due to oxygen free radical produced by the xanthine oxidase system.

  • PDF

Hepatic and renal toxicity study of rainbow trout, Oncorhynchus mykiss, caused by intraperitoneal administration of thioacetamide (TAA) (티오아세트아미드(thioacetamide) 복강투여로 인한 무지개송어, Oncorhynchus mykiss의 간장 및 신장 독성 반응 연구)

  • Min Do Huh;Da Hye Jeong
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.415-422
    • /
    • 2023
  • In veterinary medicine for mammals, studies are being conducted to confirm the effects of antioxidants using pathological toxicity model studies, and are also used to confirm the effect of mitigating liver or kidney toxicity of specific substances. It was considered necessary to study such a toxicity model for domestic farmed fish, so thioacetamide (TAA), a toxic substance that causes tissue damage by mitochondrial dysfunction, was injected into rainbow trout (Oncorhynchus mykiss), a major farmed freshwater fish species in Korea. The experiment was conducted with 40 rainbow trout (Oncorhynchus mykiss) weighting 53 ± 0.6 g divided into two groups. Thioacetamide(TAA) 300mg/kg of body weight was intraperitoneally injected into rainbow trout and samples were taken 1, 3, 5, 7 days after peritoneal injection. As a result, in serum biochemical analysis, AST levels related to liver function decreased 3 and 5 days after intraperitoneal injection and increased after 7 days, and ALT levels also increased after 7 days. In addition, creatinine related to renal malfunction increased 3 and 5 days after TAA injection. In histopathological analysis, pericholangitis and local lymphocyte infiltration were observed in the liver from 1 day after intraperitoneal injection of TAA, and hepatic parenchymal cell necrosis was also observed from 3 days after intraperitoneal injection. Hyaline droplet in renal tubular epithelial cell was observed from 1 day after TAA injection, and acute tubular damage such as tubular epithelial cell necrosis appeared from 3 days after TAA injection. Accordingly, it is thought that it will be able to contribute to studies that require a toxicity model.

Effects of Onion Juice on Ethanol-Induced Hepatic Lipid Persoxidation in Rats (양파즙이 에탄올에 의한 백서의 지질산화물 생성에 미치는 영향)

  • 박평심;이병래;이명렬
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.750-756
    • /
    • 1994
  • The effect of onion juice on ethanol -induced lipid peroxidation were studied were studied in rats. The contents of thiobarbituric acid (TBA) -reactants increased significantly in liver thanol(4ml/kg/day) administered -rats. The activities of serum alanine aminotransferase and alkaline phosphatase increased by ethanol administration compared with control group, but alterations of antioxidant enzymes activities in liver of ethanol administered rats were not significant vs control group. The glutathione contents in liver decreased by ethanol , whereas the glutathione level increased in ethanol and onion juice group compared with ethanol group. The contents of hepatic TBA-reactants and serum aminotrasnferase activity in ethanol group were reduced by onion juice administration. In these results, increased hepatic TBA-reactants of liver in ethanol group might be due to decreased glutathione contents in liver. Reduced glutathione (GSH) plays an important roles in the liver in several detoxification and the reduction of lipid peroxides. So the protective effects of onion juice on ethanol-induced increment of TBA-reactants may be due to the increament of lgutathions content. The glutathione depletion by ethanol was an important factor of ethanol-induced cell damage, and the prevention of onion juice to the glutathione depletion reduced by ethanol may be an important factor on the protection from ethanol-induced lipid perpxidation in rats.

  • PDF

Acanthopanax koreanum Nakai modulates the immune response by inhibiting TLR 4-dependent cytokine production in rat model of endotoxic shock

  • Jung, Myung-Gi;Do, Gyeong-Min;Shin, Jae-Ho;Ham, Young Min;Park, Soo-Yeong;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • The hepatoprotective activity of Acanthopanax koreanum Nakai extract (AE) was investigated against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced liver failure rats compared with that of acanthoic acid (AA) isolated from AE. Although D-GalN/LPS (250 mg/kg body weight/$10{\mu}g/kg$ body weight, i.p.) induced hepatic damage, pretreatments with AE (1 and 3% AE/g day) and AA (0.037% AA, equivalent to 3% AE/g day) alleviated the hepatic damage. This effect was the result of a significant decrease in the activity of alanine transaminase. Concomitantly, both the nitric oxide and IL-6 levels in the plasma were significantly decreased by high-dose AE (AE3) treatment compared to the GalN/LPS control (AE0). This response resulted from the regulation of pro-inflammatory signaling via a decrease in TLR4 and CD14 mRNA levels in the liver. While a high degree of necrosis and hemorrhage were observed in the AE0, pretreatment with AE3 and AA reduced the extent of hepatocyte degeneration, necrosis, hemorrhage and inflammatory cell infiltrates compared to the AE0. In conclusion, these results suggest that especially high-dose AE are capable of alleviating D-GalN/LPS-induced hepatic injury by decreasing hepatic toxicity, thereby mitigating the TLR 4-dependent cytokine release. The anti-inflammatory effect of AE could be contributing to that of AA and AE is better than AA.