• 제목/요약/키워드: heel height

검색결과 148건 처리시간 0.023초

보행속도변화에 따른 인지 과제 수행이 보행수 변동성에 미치는 영향 (Effects of Cognitive Task on Stride Rate Variability by Walking Speeds)

  • 최진승;유지혜;김형식;정순철;이정한;이봉수;탁계래
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.323-331
    • /
    • 2006
  • The purpose of this study was to investigate the effect of performing a cognitive task during treadmill walking on the stride rate variability. Ten university students(age $24.0{\pm}0.25$, height $172{\pm}3.1cm$, weight $66{\pm}5.3kg$) were participated in dual task experiments which consist of both walking alone and walking with a cognitive task. Two-back task was selected for the cognitive task since it did not have learning effect during the experimental procedure.3D motion analysis system was used to measure subject's position data by changing walking speed with 4.8, 5.6, 6.4, 6.8, and 7.2 km/hr. Stride rate was calculated by the time between heel contact and heel contact. Accuracy rate of a cognitive task during walking, coefficient of variance, allometric scaling methods and Fano factor were used to estimated the stride rate variability. As the walking speed increased, accuracy rate decreased and the logarithmic value of Fano factor increased which showed the statistical difference. Thus it can be concluded that the gait control mechanism is distracted by the secondary attention focus which is the cognitive task ie. two-back task. Further study is needed to clarify this by increasing the number of subject and experiment time.

수중걷기운동이 여성노인의 보행 및 평형능력에 미치는 영향 (Effect of Aquatic Walking Exercise on Gait and Balance Parameters of Elderly Women)

  • Kang, Ki-Joo;Lee, Joong-Sook;Yang, Jeong-Ok;Park, Joon-Sung;Han, Ki-Hoon
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.73-81
    • /
    • 2020
  • Objective: The purpose of this study is to analyze the effects of aquatic walking exercise on gait and balance parameters of elderly women. Method: 15 elderly people were recruited for this study (age: 73.20±5.19 yrs, height: 153.87±3.36 cm, mass: 60.33±5.73 kg). All variables were measured using Gaitview AFA-50. The variables were the heel contact time ratio, gait angle, and M/P change ratio for gait patterns and ENV, REC, RMS, Total Length, TLC, Sway velocity, and Length/ENV for balance abilities. A paired t-test and the Wilcoxon signed-rank test were carried out to verify the differences in the test scores after participating in the water walking program. The significance level for all statistical analyses was set to α=.05. Results: As for the changes in their walking function after the exercise, heel contact time ratio (p<.01) showed a statistical significance, while gait angle and M/P change ratio did not reveal statistically significant differences. In the test of balance ability on both feet and with eyes opened, statistical significance was found in ENV, REC, RMS, TLC (p<.01), and sway velocity (p<.05), while the test with eyes closed showed statistical significance in length/ENV as well as ENV, REC, RMS, sway velocity (p<.01) TLC, and total length (p<.05). As for the single-leg stance balance ability, ENV and REC revealed statistically significant differences. Conclusion: These results show that water walking is effective for improving the function of the ankle flexor muscles, providing stability to the ankle joint during walking and helping efficient walk. In addition, it is also expected to help prevent falls due to loss of balance by improving the stability of lower extremity muscles and trunk.

착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향 (The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact)

  • Ryu, Jiseon
    • 한국운동역학회지
    • /
    • 제30권3호
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.

키높이 인솔두께에 따른 족부의 생체역학적 특성변화에 대한 연구 (A Study on Changes in Biomechanical Characteristics of the Foot with Respect to Wedge-type Insole Thickness)

  • 박태현;정태곤;한동욱;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권2호
    • /
    • pp.80-90
    • /
    • 2013
  • Recently, functional insoles of wedge-type it is for the young to raise their height inserted between insole and heel cause foot pain and disease. Additionally, these have a problem with stability and excessively load-bearing during gait like high-heel shoes. In this study, we compared the changes in biomechanical characteristics of foot with different insole thickness then we will utilize for the development of the insole with the purpose of relieving the pain and disease. Subjects(male, n = 6) measured COP(center of pressure) and PCP(peak contact pressure) on the treadmill(140cm/s) using F-scan system and different insole thickness(0~50 mm) between sole and plantar surface during gait. Also, we computed changes of stresses at the foot using finite element model with various insole thickness during toe-off phase. COP moved anterior and medial direction and, PCP was increased at medial forefoot surface, $1^{st}$ and $2^{nd}$ metatarsophalangeal, ($9%{\uparrow}$) with thicker insoles and it was show sensitive increment as the insole thickness was increased from 40 mm to 50 mm. Change of the stress at the soft-tissue of plantar surface, $1^{st}$ metatarsal head represents rapid growth($36%{\uparrow}$). Also, lateral moments were increased over the 100% near the $1^{st}$ metatarsal as the insole thickness was increased from 0 mm to 30 mm. And it is show sensitive increment as the insole thickness changed 10 mm to 20 mm. As a result, it was expected that use of excessively thick insoles might cause unwanted foot pain at the forefoot region. Therefore, insole thickness under 30 mm was selected.

달리기 시 충격력과 충격 쇼크 변인들과의 관계 (Relationship between Impact and Shear Forces, and Shock during Running)

  • Park, Sang-Kyoon;Ryu, Ji-Seon
    • 한국운동역학회지
    • /
    • 제30권2호
    • /
    • pp.145-154
    • /
    • 2020
  • Objective: The purpose of this study was to determine the relationship between impact and shear peak force, and tibia-accelerometer variables during running. Method: Twenty-five male heel strike runners (mean age: 23.5±3.6 yrs, mean height: 176.3±3.3 m/s, mean mass: 71.8±9.7 kg) were recruited in this study. The peak impact and anteroposterior shear forces during treadmill running (Bertec, USA) were collected, and impact shock variables were computed by using a triaxial accelerometer (Noraxon, USA). One-way ANOVA was used to test the influence of the running speed on the parameters. Pearson's partial correlation was used to investigate the relationship between the peak impact and shear force, and accelerometer variables. Results: The running speed affected the peak impact and posterior shear force, time, slope, and peak vertical and resultant tibial acceleration, slope at heel contact. Significant correlations were noticed between the peak impact force and peak vertical and resultant tibia acceleration, and between peak impact average slope and peak vertical and resultant tibia acceleration average slope, and between posterior peak (FyP) and peak vertical tibia acceleration, and between posterior peak instantaneous slop and peak vertical tibial acceleration during running at 3 m/s. However, it was observed that correlations between peak impact average slope and peak vertical tibia acceleration average slope, between posterior peak time and peak vertical and resultant tibia acceleration time, between posterior peak instantaneous slope and peak vertical tibial acceleration instantaneous slope during running at 4 m/s. Conclusion: Careful analysis is required when investigating the linear relationship between the impact and shear force, and tibia accelerometer components during relatively fast running speed.

달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화 (Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running)

  • Young-Seong Lee;Sang-Kyoon Park
    • 한국운동역학회지
    • /
    • 제33권4호
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

스쿼트 동작 시 발뒤꿈치 보조물 경사각에 따른 하지근과 척추기립근의 근육활동 비교 (Effect of Different Heel Plates on Muscle Activities During the Squat)

  • 채원식;정현경;장재익
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.113-121
    • /
    • 2007
  • The purpose of this study was to determine the effect of three different plates($0^{\circ}$, $10^{\circ$}, $20^{\circ}$)under heels on the lower limb muscles and erector spinae during squat exercise. Ten high school korean traditional wrestling players(age: $18.5{\pm}0.7$, weight: $1972.2{\pm}128.5N$, height: $177.8{\pm}6.0cm$, weight of barbell: $1004.5{\pm}132.4N$) performed squat exercise using three different tilting plates under heels at a cadence of 40beats/sec with 80% one repetition maximum load. Surface electrodes were placed on the participants' left and right erector spinae, and rectus femoris, vastus medialis, vastus lateralis, tibialis anterior, biceps femoris, medial gastrocnemius, and lateral gastrocnemius in the right lower extremity. One S-VHS camcorder(Panasonic AG456, 60fields/s) was placed 10m to the side of the participant. To synchronize the video and EMG data, a synchronization unit was used for this study. Average and Peak IEMG values were determined for each participant. For each variable, a one-way analysis of variance was used to determine whether there were significant differences among three different tilting plates under heels. When a significant difference was found in plates type, post hoc analyses were performed using the Tukey procedure. A confidence level of p<.05 was used to determine statistical significance. As a result of this study, maximum nEMG values of the tibialis anterior in $0^{\circ}$ plates was significantly higher than the corresponding values for the other plates during the knee extension. This increased activation in the tibialis anterior muscle indicates an increase in displacement of center of gravity of body. It is very likely that additional muscle activation are needed to stop the forward and backward movement. The results also showed that muscular activities of quadriceps femoris and erector spinae were decreased with increasing angle of plates. This suggests that increasing angle of plate may help to sustain the balance and posture of squat exercise. It is considered that very few significant differences were found among three different plates($0^{\circ}$, $10^{\circ}$, $20^{\circ}$) since elite players with much experience in squat exercise, were chosen as a participant of this study. In order to obtain meaningful results regarding the tilting angle of heel plates in squat exercise, kinetic and 3D kinematic analysis will be needed in the future study.

Air-gap effect on life boat arrangement for a semi-submersible FPU

  • Kim, Mun-Sung;Park, Hong-Shik;Jung, Kwang-Hyo;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.487-495
    • /
    • 2016
  • In the offshore project such as semi-submersible FPU and FPSO, the free fall type life boat called TEMPSC (Totally Enclosed Motor Propelled Survival Craft) has been installed for the use of an emergency evacuation of POB (People on Board) from the topside platform. For the design of life boat arrangement for semi-submersible FPU in the initial design stage, the drop height and launch angle are required fulfill with the limitation of classification society rule and Company requirement, including type of approval as applicable when intact and damage condition of the platform. In this paper, we have been performed the numerical studies to find proper arrangement for the life boats consider drop height in various environmental conditions such as wave, wind and current. In the calculations, the contributions from static and low frequency (LF) motions are considered from the hydrodynamic and mooring analysis as well as damage angle from the intact and damage stability analysis. Also, Air-gap calculation at the life boat positions has been carried out to check the effect on the life boat arrangement. The air-gap assessment is based on the extreme air-gap method includes the effect of 1st order wave frequency (WF) motions, 2nd order low frequency roll/pitch motion, static trim/heel and set down.

유소년 스포츠 선수들의 점프착지 후 수직점프 동작 시 착지 유형에 따른 하지관절의 운동역학적 분석 (Biomechanical Analysis of Lower Extremity Joints According to Landing Types during Maximum Vertical Jump after Jump Landing in Youth Sports Athletes)

  • Jiho Park;Joo Nyeon Kim;Sukhoon Yoon
    • 한국운동역학회지
    • /
    • 제33권3호
    • /
    • pp.110-117
    • /
    • 2023
  • Objective: The purpose of this study was to find out kinematic and kinetic differences the lower extremity joint according to the landing type during vertical jump movement after jump landing, and to present an efficient landing method to reduce the incidence of injury in youth players. Method: Total of 24 Youth players under Korean Sport and Olympic Committee, who used either heel contact landing (HCG) or toe contact landing (TCG) participated in this study (HCG (12): CG height: 168.7 ± 9.7 cm, weight: 60.9 ± 11.6 kg, age: 14.1 ± 0.9 yrs., career: 4.3 ± 2.9 yrs., TCG height: 174.8 ± 4.9 cm, weight: 66.9 ± 9.9 kg, age 13.9 ± 0.8 yrs., career: 4.7 ± 2.0 yrs.). Participants were asked to perform jump landing consecutively followed by vertical jump. A 3-dimensional motion analysis with 19 infrared cameras and 2 force plates was performed in this study. To find out the significance between two landing styles independent t-test was performed and significance level was set at .05. Results: HCG showed a significantly higher dorsi flexion, extension and flexion angle at ankle, knee and hip joints, respectively compared with those of TCG (p<.05). Also, HCG revealed reduced RoM at ankle joint while it showed increased RoM at knee joint compared to TCG (p<.05). In addition, HGC showed greater peak force, a loading rate, and impulse than those of TCG (p<.05). Finally, greater planta flexion moment was revealed in TCG compared to HCG at ankle joint. For the knee joint HCG showed extension and flexion moment in E1 and E2, respectively, while TCG showed opposite results. Conclusion: Compared to toe contact landing, the heel contact landing is not expected to have an advantage in terms of absorbing and dispersing the impact of contact with the ground to the joint. If these movements continuously used, performance may deteriorate, including injuries, so it is believed that education on safe landing methods is needed for young athletes whose musculoskeletal growth is not fully mature.

착지 동작 시 깔창 높이가 20대 남성의 하지 관절 각도와 근활성도에 미치는 영향 (The Effect of the Insole Height on Lower Limb Joint Angle and Muscle Activity at Landing when the Maximal Ground Reaction Force of Male in Their 20s)

  • 유경태
    • 융합정보논문지
    • /
    • 제10권12호
    • /
    • pp.132-139
    • /
    • 2020
  • 본 연구의 목적은 착지 시 키 높이 깔창 높이에 따라 젊은 남성의 최대지면반발력시 하지관절각도와 근 활성도에 미치는 영향을 분석하는데 있다. 20대 남성을 대상으로 총 3주에 걸쳐 한 주당 0, 3, 5cm 의 폴리우레탄 소재의 깔창 중 무작위로 하나를 착용하여 40cm 높이의 플랫폼 위에서 Force plate로 착지 동작을 시행하였다. 착지 동작 중 최대 지면반발력 시 하지의 관절 각도와 넙다리곧은근, 넙다리두갈래근, 앞정강근, 장딴지근의 근활성도를 측정하였다. 깔창의 높이에 따른 하지관절 각도와 근활성도의 변화를 비교하기 위해 반복요인이 있는 분산분석(one-way ANOVA)을 실시하였다. 하지관절각도 분석 결과 깔창의 높이가 높아질수록 좌측 발목관절 각도에 영향을 주었으며, 근활성도 분석 결과 깔창의 높이가 높아질수록 우측 앞정강근과 양쪽 넙다리 두갈래근에 영향을 주었다. 하지 근육의 충분한 근력증가를 통하여 착지시 신체를 보호할 수 있을 것이라고 생각되며 깔창의 종류에 따라 영향을 미치는 근육과 하지관절의 각도도 다를 수 있으므로 그에 대한 연구가 필요할 것으로 사료된다.