DOI QR코드

DOI QR Code

Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running

달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화

  • Young-Seong Lee (Motion Innovation Centre, Korea National Sport University) ;
  • Sang-Kyoon Park (Motion Innovation Centre, Korea National Sport University)
  • Received : 2023.11.17
  • Accepted : 2023.12.06
  • Published : 2023.12.30

Abstract

Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

Keywords

References

  1. Almeida, M. O., Davis, I. S. & Lopes, A. D. (2015). Biomechanical differences of foot-strike patterns during running: a systematic review with meta-analysis. Journal of Orthopaedic & Sports Physical Therapy, 45(10), 738-755. 
  2. Arendse, R. E., Noakes, T. D., Azevedo, L. B., Romanov, N., Schwellnus, M. P. & Fletcher, G. (2004). Reduced eccentric loading of the knee with the pose running method. Medicine & Science in Sports & Exercise, 36(2), 272-277. 
  3. Bertelsen, M. L., Hulme, A., Petersen, J., Brund, R. K., Sorensen, H., Finch, C. F. ... & Nielsen, R. O. (2017). A framework for the etiology of running-related injuries. Scandinavian Journal of Medicine & Science in Sports, 27(11), 1170-1180. 
  4. Blackmore, T., Willy, R. W. & Creaby, M. W. (2016). The high frequency component of the vertical ground reaction force is a valid surrogate measure of the impact peak. Journal of Biomechanics, 49(3), 479-483. 
  5. Brayne, L., Barnes, A., Heller, B. & Wheat, J. (2018). Using a wireless consumer accelerometer to measure tibial acceleration during running: agreement with a skin-mounted sensor. Sports Engineering, 21(4), 487-491. 
  6. Breine, B., Malcolm, P., Van Caekenberghe, I., Fiers, P., Frederick, E. C. & De Clercq, D. (2017). Initial foot contact and related kinematics affect impact loading rate in running. Journal of Sports Sciences, 35(15), 1556-1564. 
  7. Cavanagh, P. R. & Lafortune, M. A. (1980). Ground reaction forces in distance running. Journal of Biomechanics, 13(5), 397-406. 
  8. Cheung, R. T., Zhang, J. H., Chan, Z. Y., An, W. W., Au, I. P., MacPhail, A. & Davis, I. S. (2019). Shoe-mounted accelerometers should be used with caution in gait retraining. Scandinavian Journal of Medicine & Science in Sports, 29(6), 835-842. 
  9. Ceyssens, L., Vanelderen, R., Barton, C., Malliaras, P. & Dingenen, B. (2019). Biomechanical risk factors associated with running-related injuries: a systematic review. Sports Medicine, 49(7), 1095-1115. 
  10. Daoud, A. I., Geissler, G. J., Wang, F., Saretsky, J., Daoud, Y. A. & Lieberman, D. E. (2012). Foot strike and injury rates in endurance runners: a retrospective study. Medicine & Science in Sports & Exercise, 44(7), 1325-1334. 
  11. Dos Santos, A. F., Nakagawa, T. H., Serrao, F. V. & Ferber, R. (2019). Patellofemoral joint stress measured across three different running techniques. Gait & Posture, 68, 37-43. 
  12. Duffey, M. J., Martin, D. F., Cannon, D. W., Craven, T. & Messier, S. P. (2000). Etiologic factors associated with anterior knee pain in distance runners. Medicine and Science in Sports and Exercise, 32(11), 1825-1832. 
  13. Francis, P., Whatman, C., Sheerin, K., Hume, P. & Johnson, M. I. (2019). The proportion of lower limb running injuries by gender, anatomical location and specific pathology: a systematic review. Journal of Sports Science & Medicine, 18(1), 21. 
  14. Forner, A., Garcia, A. C., Alcantara, E., Ramiro, J., Hoyos, J. V. & Vera, P. (1995). Properties of shoe insert materials related to shock wave transmission during gait. Foot & Ankle International, 16(12), 778-786. 
  15. Glauberman, M. D. & Cavanagh, P. R. (2014). Rearfoot strikers have smaller resultant tibial accelerations at foot contact than non-rearfoot strikers. In Journal of Foot and Ankle Research, 17(1), 1-2. 
  16. Goss, D. L. & Gross, M. T. (2012). A review of mechanics and injury trends among various running styles. US Army Medical Department Journal, 62-71.
  17. Gruber, A. H., Boyer, K. A., Derrick, T. R. & Hamill, J. (2014). Impact shock frequency components and attenuation in rearfoot and forefoot running. Journal of Sport and Health Science, 3(2), 113-121. 
  18. Gruber, A. H., Edwards, W. B., Hamill, J., Derrick, T. R. & Boyer, K. A. (2017). A comparison of the ground reaction force frequency content during rearfoot and non-rearfoot running patterns. Gait & Posture, 56, 54-59. 
  19. Gurchiek, R. D., Garabed, C. P. & McGinnis, R. S. (2020). Gait event detection using a thigh-worn accelerometer. Gait & Posture, 80, 214-216. 
  20. Hamill, J., Derrick, T. R. & Holt, K. G. (1995). Shock attenuation and stride frequency during running. Human Movement Science, 14(1), 45-60 
  21. Hasegawa, H., Yamauchi, T. & Kraemer, W. J. (2007). Foot strike patterns of runners at the 15-km point during an elite-level half marathon. The Journal of Strength & Conditioning Research, 21(3), 888-893. 
  22. Hennig, E. M. & Lafortune, M. A. (1991). Relationships between ground reaction force and tibial bone acceleration parameters. Journal of Applied Biomechanics, 7(3), 303-309. 
  23. Hollis, C. R., Koldenhoven, R. M., Resch, J. E. & Hertel, J. (2019). Running biomechanics as measured by wearable sensors: effects of speed and surface. Sports Biomechanics, 20(5), 521-531. 
  24. Huang, Y., Xia, H., Chen, G., Cheng, S., Cheung, R. T. & Shull, P. B. (2019). Foot strike pattern, step rate, and trunk posture combined gait modifications to reduce impact loading during running. Journal of Biomechanics, 86, 102-109. 
  25. Kang, D. H. (2021, May 22). Just run, forget about Corona...2030, 'addicted' to marathon, DONG-A ILBO, Retrieved from https://donga.com/news/It/article/all/20210521/107054868/1 
  26. Kluitenberg, B., van Middelkoop, M., Diercks, R. & van der Worp, H. (2015). What are the differences in injury proportions between different populations of runners? A systematic review and meta-analysis. Sports Medicine, 45, 1143-1161. 
  27. Kuhman, D., Melcher, D. & Paquette, M. R. (2016). Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners. European Journal of Sport Science, 16(4), 433-440. 
  28. Kulmala, J. P., Avela, J., Pasanen, K. & Parkkari, J. (2013). Effects of striking strategy on lower extremity loading during running. British Journal of Sports Medicine, 47(10), e3. 
  29. Lafortune, M. A. & Hennig, E. M. (1992). Cushioning properties of footwear during walking: accelerometer and force platform measurements. Clinical Biomechanics, 7(3), 181-184. 
  30. Laughton, C. A., Davis, I. M. & Hamill, J. (2003). Effect of strike pattern and orthotic intervention on tibial shock during running. Journal of Applied Biomechanics, 19(2), 153-168. 
  31. Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D'andrea, S., Davis, I. S. ... & Pitsiladis, Y. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(7280), 531-535. 
  32. Lopes, A. D., Hespanhol, L. C., Yeung, S. S. & Costa, L. O. P. (2012). What are the main running-related musculoskeletal injuries?. Sports Medicine, 42(10), 891-905. 
  33. Lucas-Cuevas, A. G., Encarnacion-Martinez, A., Camacho-Garcia, A., Llana-Belloch, S. & Perez-Soriano, P. (2017). The location of the tibial accelerometer does influence impact acceleration parameters during running. Journal of Sports Sciences, 35(17), 1734-1738. 
  34. Malisoux, L., Nielsen, R. O., Urhausen, A. & Theisen, D. (2015). A step towards understanding the mechanisms of running-related injuries. Journal of Science and Medicine in Sport, 18(5), 523-528. 
  35. McClay, I. & Manal, K. (1995). Lower extremity kinematic comparisons between forefoot and rearfoot strikers. In conference proceedings: 19th Annual Meeting of the ASB, Stanford, CA, 211-212. 
  36. Meyer, U., Ernst, D., Schott, S., Riera, C., Hattendorf, J., Romkes, J. ... & Kriemler, S. (2015). Validation of two accelerometers to determine mechanical loading of physical activities in children. Journal of Sports Sciences, 33(16), 1702-1709. 
  37. Milner, C. E., Ferber, R., Pollard, C. D., Hamill, J. & Davis, I. S. (2006). Biomechanical factors associated with tibial stress fracture in female runners. Medicine and Science in Sports and Exercise, 38(2), 323. 
  38. Nigg, B. M., Cole, G. K. & Bruggemann, G. P. (1995). Impact forces during heel-toe running. Journal of Applied Biomechanics, 11(4), 407-432. 
  39. Nunns, M., House, C., Fallowfield, J., Allsopp, A. & Dixon, S. (2013). Biomechanical characteristics of barefoot footstrike modalities. Journal of Biomechanics, 46(15), 2603-2610. 
  40. Ogon, M., Aleksiev, A. R., Pope, M. H., Wimmer, C. & Saltzman, C. L. (1999). Does arch height affect impact loading at the lower back level in running?. Foot & Ankle International, 20(4), 263-266. 
  41. Park, S. K., Stefanyshyn, D., Ryu, S., Gil, H., Lee, Y. S., Kim, J. & Ryu, J. (2022). Comparisons of Age-Related Changes in Impact Characteristics Between Healthy Older and Younger Runners. International Journal of Precision Engineering and Manufacturing, 23(12), 1465-1476. 
  42. Rice, H. & Patel, M. (2017). Manipulation of foot strike and footwear increases Achilles tendon loading during running. The American Journal of Sports Medicine, 45(10), 2411-2417. 
  43. Ryu, J. S. (2005). Impact shock and kinematic characteristics of the Lower extremity's joint during downhill running. Korean Society of Sport Biomechanics, 15(4), 117-129. 
  44. Ryu, J. S. (2013). Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components, Korean Journal of Sport Biomechanics, 23(3), 225-233. 
  45. Ryu, S. H., Lee, Y. S. & Park, S. K. (2021). Impact Signal Differences Dependent on the Position of Accelerometer Attachment and the Correlation with the Ground Reaction Force during Running. International Journal of Precision Engineering and Manufacturing, 22(10), 1791-1798. 
  46. Wundersitz, D. W., Netto, K. J., Aisbett, B. & Gastin, P. B. (2013). Validity of an upper-body-mounted accelerometer to measure peak vertical and resultant force during running and change-of-direction tasks. Sports Biomechanics, 12(4), 403-412.