DOI QR코드

DOI QR Code

The Effect of the Insole Height on Lower Limb Joint Angle and Muscle Activity at Landing when the Maximal Ground Reaction Force of Male in Their 20s

착지 동작 시 깔창 높이가 20대 남성의 하지 관절 각도와 근활성도에 미치는 영향

  • Yoo, Kyung-Tae (Department of Physical Therapy, Namseoul University)
  • 유경태 (남서울대학교 물리치료학과)
  • Received : 2020.10.21
  • Accepted : 2020.12.20
  • Published : 2020.12.28

Abstract

The purpose of this study is to analyze the effect of the height and insole height upon landing on the lower limb joint angle and muscle activity during maximum ground repulsion in young men. For a male in their twenties, a landing motion was performed with a force plate on a 40cm-high platform by wearing one of 0, 3, 5cm polyurethane insoles per week for a total of 3 weeks. During the landing motion, the joint angle of the lower extremities and the muscle activity of the rectus femoris, biceps femoris, anterior tibialis and calf muscles were measured during the maximum ground repulsion. In order to compare the changes in the joint angle and muscle activity of the lower limbs according to the height of the insole, a one-way ANOVA with repetitive factors was performed. As a result of the analysis of the lower limb joint angle, the higher the height of the insole affected the angle of the left ankle joint. As a result of the muscle activity analysis, the higher the height of the insole affected the right anterior tibialis muscle and biceps femoris. It is thought that it is possible to protect the body when landing through sufficient muscle strength increase of the lower limb muscles. As the angle of the affected muscle and lower limb joint may be different depending on the type of insole, it is considered necessary to study it.

본 연구의 목적은 착지 시 키 높이 깔창 높이에 따라 젊은 남성의 최대지면반발력시 하지관절각도와 근 활성도에 미치는 영향을 분석하는데 있다. 20대 남성을 대상으로 총 3주에 걸쳐 한 주당 0, 3, 5cm 의 폴리우레탄 소재의 깔창 중 무작위로 하나를 착용하여 40cm 높이의 플랫폼 위에서 Force plate로 착지 동작을 시행하였다. 착지 동작 중 최대 지면반발력 시 하지의 관절 각도와 넙다리곧은근, 넙다리두갈래근, 앞정강근, 장딴지근의 근활성도를 측정하였다. 깔창의 높이에 따른 하지관절 각도와 근활성도의 변화를 비교하기 위해 반복요인이 있는 분산분석(one-way ANOVA)을 실시하였다. 하지관절각도 분석 결과 깔창의 높이가 높아질수록 좌측 발목관절 각도에 영향을 주었으며, 근활성도 분석 결과 깔창의 높이가 높아질수록 우측 앞정강근과 양쪽 넙다리 두갈래근에 영향을 주었다. 하지 근육의 충분한 근력증가를 통하여 착지시 신체를 보호할 수 있을 것이라고 생각되며 깔창의 종류에 따라 영향을 미치는 근육과 하지관절의 각도도 다를 수 있으므로 그에 대한 연구가 필요할 것으로 사료된다.

Keywords

References

  1. J. J. Park & S. B. Park. (2015). Biomechanical Anlaysis for the Development of Windlass Mechanism for Trail-walking Shoe. Korean Journal of Sport Biomechanics, 25(4), 489-498. https://doi.org/10.5103/KJSB.2015.25.4.489
  2. Y. J. Lee. (2014). The Effect of the Shoes Insole Height on the Gait in Male College Student. The Korea Journal of Sport, 12(4), 437-445.
  3. J. S. Lee, D. H. Kim, B. W. Jung, D. W. Han & D. M. Park. (2011). Quality of the Material of Popular Heel-up Insole on the Mean Plantar Foot Pressure during Walking. Korean journal of sport biomechanics, 21(4), 479-486. https://doi.org/10.5103/KJSB.2011.21.4.479
  4. C. M. Powers. (2003). The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther, 33(11), 639-646. DOI : 10.2519/jospt.2003.33.11.639
  5. J. Yu, J. T. M. Cheung, Y. Fan, Y. Zhang, A. K. L. Leung & M. Zhang. (2008). Development of a finite element model of female foot for high-heeled shoe design. Clinical Biomechanics, 23(1), 31-38. DOI : 10.1016/j.clinbiomech.2007.09.005
  6. J. H. Cho, Y. C. Koh, D. Y. Lee & K. H. Kim. (2012). The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights. Korean Journal of Sport Biomechanics, 22(3), 315-324. https://doi.org/10.5103/KJSB.2012.22.3.315
  7. P. Devita & W. A. Skelly. (1992). Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc, 24(1), 108-115.
  8. J. S. Dufek, B. T. Bates, H. P. Davis & L. A. Malone. (1991). Dynamic performance assessment of selected sport shoes on impact forces. Medicine and science in sports and exercise, 23(9), 1062-1067.
  9. J. L. McNitt-Gray. (1993). Kinetics of the lower extremities during drop landings from three heights. Journal of Biomechanics, 26(9), 1037-1046. https://doi.org/10.1016/S0021-9290(05)80003-X
  10. K. G. Woo, S. C. Jo, S. H. Jeong, H. S. Jang & C. H. Yang. (2006). The Effects of Floor Properties on Landing Kinematics of Drop Jump. Journal of Coaching Development, 8(4), 389-400.
  11. S. H. Ryu, S. H. Kim & J. R. Cho. (2005). Finite Element Analysis of Impact Characteristics of Shoes-Leg Coupled Model to Landing Mode. Trans Korean Soc Mech Eng A, 29(9), 1191-1198. https://doi.org/10.3795/KSME-A.2005.29.9.1191
  12. J. T. Blackburn & D. A. Padua. (2007). Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clinical Biomechanics, 23(3), 313-319. DOI : 10.1016/j.clinbiomech.2007.10.003
  13. J. L. McNitt-Gray. (1991). Kinematics and impulse characteristics of drop landings from three heights. International Journal of Sports Biomechanics, 7(2), 201-223. https://doi.org/10.1123/ijsb.7.2.201
  14. S. R. Simon, E. L. Radin, I. L. Paul & R. M. Rose. (1972). The response of joints to impact loading - II In vivo behavior of subchondral bone. Journal of Biomechanics, 5(3), 267-272. DOI : 10.1016/0021-9290(72)90042-5
  15. T. S. Gross & R. C. Nelson. (1988). The shock attenuation role of the ankle during landing from a vertical jump. Medicine and science in sports and exercise, 20(5), 506-514.
  16. R. J. Butler, H. P. Crowell & I. M. Davis. (2003). Lower extremity stiffness: implications for performance and injury. Clinical biomechanics (Bristol, Avon), 18(6), 511-517. DOI : 10.1016/s0268-0033(03)00071-8
  17. C. H. Yeow, P. V. Lee & J. C. Goh. (2009). Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing. Knee, 16(5), 381-6. https://doi.org/10.1016/j.knee.2009.02.002
  18. W. G. Yoo, H. J. Lee & C. H. Yi. (2005). Effects of Medial, Lateral Wedge and Difference of Quadriceps Angle on Vastus Medialis Oblique/Vastus Lateralis Muscle Activity Ratios. Phys Ther Korea, 12(2), 11-19.
  19. C. J. Barton, J. A. Coyle & P. Tinley. (2009). The Effect of Heel Lifts on Trunk Muscle Activation During Gait: A Study of Young Healthy Females. J Electromyogr Kinesiol, 19(4), 598-606. DOI : 10.1016/j.jelekin.2008.03.001
  20. C. M. Lee & E. H. Jeong. (2004). The Study on Musculoskeletal Effects of Heel Types. J Ergon Soc Korea, 23(1), 39-48. DOI : 10.5143/JESK.2004.23.1.039
  21. Y. K. Lee. (2014). Effects of Insole Height in Shoes on Ankle Muscle Activities and Gait Performance, Holistic Health Association, 4(2), 41-48. http://www.earticle.net.ssl.proxy.nsu.ac.kr:8010/Article/A242383
  22. W. S. Chae, J. H. Jung. (2015). Wearing Carbon Nanotube-Based Insole on Resultant Joint Moment and Muscle Activity of the Lower Extremity During Drop Landing. Korean Journal of Sport Science, 26(3), 479-487. https://doi.org/10.24985/KJSS.2015.26.3.479
  23. Y. K. Kim, Y. H. Kim. (2011). Inter-joint Coordination and Muscle Activities of Lower Limb in Responding to Jump Height. The Korean Society Of Sports Science, 20(2), 1121-1130.
  24. B. Caulfield & M. Garrett. (2004). Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clinical Biomechanics, 19(6), 617-621. DOI : 10.1016/j.clinbiomech.2004.03.001
  25. M. R. Safran, R. S. Benedetti, A. R. Bartolozzi & B. R. Mandelbaum. (1999). Lateral ankle sprains: a comprehensive review: part 1: etiology, pathoanatomy, histopathogenesis, and diagnosis. Med Sci Sports Exerc, 31(7 Suppl), S429-437. DOI : 10.1097/00005768-199907001-00004
  26. S. N. Zhang, B. T. Bates & J. S. Dufek. (2000). Contributions of lower extremity joints to energy dissipation during landings. Medicine & Science in Sports & Exercise, 32(4), 812-819. https://doi.org/10.1097/00005768-200004000-00014
  27. D. A. Padua, B. L. Amold, B. M. Gansneder, C. R. Carcia & K. P. Granata. (2006). Fatigue, Vertical leg stiffness, and stiffness control strategies in males and females. J Athl Train, 41(3), 294-304.
  28. P. A. Gribble, J. Hertel, C. R. Denegar & W. Buckley. (2004). The effects of Fatigue and Chronic Ankle Instability on Dynamic Postural Control, Journal of Athletic Training, 39(4), 321-329.
  29. R. E. Snowand, K. R. Williams. (1994). High heeled shoes: Their effect on center of mass position, posture, three-dimensional kinematics, rearfoot motion, and ground reaction forces. Arch Phys Med Rehabil, 75(5), 568-576.
  30. G. S. Moon. (2014). The effect for the different height of high-heeled shoes on the lower extremity joint during the level running. The Korean Society Of Sports Science, 23(4), 1311-1324.
  31. J. Y. Kim, Y. H. Kim. (2008). Lower Extremity EMG Analysis on Various Landing Methods During Hopping. In Proceedings of the Korean Society of Precision Engineering Conference (pp. 643-644). Korean Society for Precision Engineering.
  32. J. J. Kim, K. S. Kim. (2016). A Biomechanical Analysis of Gait Variables about Shoes's Heel-height in Female College Students. Korean Society For The Study Of Physical Education, 20(4), 129-142. https://doi.org/10.15831/JKSSPE.2016.20.4.129
  33. A. Gefen, M. Megido-Ravid, Y. Itzchak & M. Arcan. (2002). Analysis of muscular fatigue and foot stability during high-heeled gait. Gait and Posture, 15(1), 56-63. https://doi.org/10.1016/S0966-6362(01)00180-1
  34. C. M. Lee, E. H. Jeong & A. Freivalds. (2001). Biomechanical effects of wearing high-heeled shoes. International Journal of Industrial Ergonomics, 28(6), 321-326. https://doi.org/10.1016/S0169-8141(01)00038-5