• Title/Summary/Keyword: heavy storm

Search Result 160, Processing Time 0.027 seconds

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF

Heavy Rainfall prediction using convective instability index (대류성 불안정 지수를 이용한 집중호우 예측)

  • Kim, Young-Chul;Ham, Sook-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The purpose of this study is possibility of the heavy rainfall prediction using instability index. The convective instability index using this study is Convective Available Potential Energy(CAPE) concerned the growth energy of the storm, Bulk Richardson Number(BRN) concerned the type and strength of the storm, and Sotrm Relative Helicity(SRH) concerned maintenance of the storm. To verify the instability index, the simulation of heavy rainfall case experiment by Numerical Weather Prediction(NWP) model(MM5) are designed. The results of this study summarized that the heavy rainfall related to the high instability index and the proper combination of one more instability index made the higher heavy rainfall prediction.

  • PDF

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

The Meteorological Disaster Analysis for the Natural Disaster Mitigation in the Korean Peninsula (자연재해 저감을 위한 한반도 피해 현황 분석)

  • Park, Jong-Kil;Choi, Hyo-Jin;Jung, Woo-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.319-322
    • /
    • 2007
  • This study aims to find the characteristics of damage and states of natural disasters at the Korean Peninsula from 1985 to 2004. Using the data of Statistical yearbook of calamities issued by the National Emergency Management Agency and Annual Climatological Report issued by the Korea Meteorological Administration. we have analyzed the cause, elements, and vulnerable regions for natural disasters. Major causes of natural disaster at Korean Peninsula are four, such as a heavy rain, heavy rain typhoon, typhoon, storm snow, and storm. The frequency of natural disaster is the highest from June to September. The period from December to March also shows high frequency. The total amount of damage is high during the summer season(Jul.-Sept). The period from January to March shows relatively high amount of damage due to storm and storm snow The areas of Gangwon-do, Gyeongsangnam-do and Gyeongsangbuk-do are classified the vulnerable region for the natural disasters. By establishing mitigation plans which fit the type and characteristics of disaster for each region, damage from disaster can be reduced with efficient prevention activities.

  • PDF

Estimation of Probable Maximum Precipitation in Thailand Using Geographic Information System

  • Kingpaiboon, Sununtha;Netwong, Titiya
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.804-806
    • /
    • 2003
  • Probable Maximum Precipitation (PMP) is essential in the design of hydraulic structures such as dams, weirs and flood control structures. Up to the present, PMP has been derived from any proper single storm which can have a large error. PMP values should be evaluated from many historic heavy storm events from all over the country. Since this can be done at the spots of storm occurring and the calculated PMP from all spots in the country can be correlated. The objectives of this study are therefore to evaluate PMP from historic heavy storm data from 1972 to 2000 by using meteorological method, then to correlate and to present the results using GIS. The maximized rainfall depths can be calculate from depth of heavy rainfall and dew point temperature, and then can be analyzed for each rainfall duration to obtain spatial rainfall distribution by using GIS. The depth-area-duration relationship of maximized rainfall can be obtained and this helps to develop enveloped curves . The results from this study are a set of contour maps of PMP for each rainfall duration for all over the country and the depth-area-duration relationships for the area of 100 to 50,000 km.$^{2}$ at duration of 1, 2 and 3 days.

  • PDF

Hydrometeorological Characteristics of the Heavy Storm of July, 1996 in the Hantan Basin (96년 7월 한탄강유역 집중호우의 특성 분석)

  • Yun, Yong-Nam;Kim, Jae-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.389-399
    • /
    • 1997
  • The heavy strom of July 26-28, 1996, which occurred over the Northern Kyungi Province and Western Kangwon Province, is analyzed to investigate the hydrometeorological characteristics and frequency of occurrences of the storm. The study region is limited to the watershed area of Hantan River on which the partially destructed Yeonchon Dam is located. Hourly rainfall data at 21 rain gauging stations in and near the Hantan river basin are collected and the cumulative rainfall mass curves constructed and compared each other to judge the credibility and consistency of rainfall data at nearby stations. In order to analyze the spatially moving characteristics of rain storm the isochrones based on real time are constructed using the several fixed-percentage cumulative rainfalls at the stations. The basin average rainfalls of various durations are computed for Yeonchon dam and the return period of July/1996 storm are evaluated based on the rainfall frequency curves at Cheolwon and Yeonchon rain gauging stations. A comparison is also made between the July/1996 storm and PMP of the region, which demonstrated the severity of the heavy storm.

  • PDF

Synoptic Analysis of Heavy Rainstorms over Urban Areas in the Southern United States (미국 남부지방 도시호우의 종관적 분석)

  • Youngeun Choi
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.3
    • /
    • pp.395-409
    • /
    • 1998
  • The purpose of this paper is to determine the atmospheric conditions in whih urban areas affect the precipitation processes and to evaluate whether certain weather types show more apparent urban effect on precipitation modification over five cities in the southem United States. Each heavy rainstorm is classified into one of three synoptic weather types (frontal storm, airmass storm or tropical disturbance storm). Heavy rainstorm day is defined as day producing rainfall totals that equal o exceed 2 inches (50.08 mm). Houston, Dallass and San Antonio show possible urban effects on rainfall totals and frequencies of heavy rainstorms by airmass storm type while New Orleans and Memphis do not reveal any distinct precipitation enhancements through the synoptic analysis. The results of TSA (Trend Surface Analysis) show that frontal and tropical disturbance storm types have stronger climatic gradients than airmass types and the patterns of rainfall totals have stronger trends than those of rainfall frequencies for the five cities. The results suggest that airmass type events may well reveal possible precipitation enhancements due to urban effects since they are less influenced by a strong climate gradient and they provide favorable conditions for development of urban heat islands. Residual analysis confirms that rainfall totals and frequencies of heavy rainstorms by airmass storm type have positive residuals over the city or the major effect area.

  • PDF

Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front (장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구)

  • Park, Chang-Geun;Lee, Tae-Young
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

Current Status of Intensive Observing Period and Development Direction (집중관측사업의 현황과 발전 방향)

  • Kim, Hyun Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Domestic IOP (intensive observing period) has mostly been represented by the KEOP (Korea Enhanced Observing Period), which started the 5-yr second phase in 2006 after the first phase (2001-2005). During the first phase, the KEOP had focused on special observations (e.g., frontal systems, typhoons, etc.) around the Haenam supersite, while extended observations have been attempted from the second phase, e.g., mountain and downstream meteorology in 2006 and heavy rainfall in the mid-central region and marine meteorology in 2007. So far the KEOP has collected some useful data for severe weather systems in Korea, which are very important in understanding the development mechanisms of disastrous weather systems moving into or developing in Korea. In the future, intensive observations should be made for all characteristic weather systems in Korea including the easterly in the central-eastern coastal areas, the orographically-developed systems around mountains, the heavy snowfall in the western coastal areas, the upstream/downstream effect around major mountain ranges, and the heavy rainfall in the mid-central region. Enhancing observations over the seas around the Korean Peninsula is utmost important to improve forecast accuracy on the weather systems moving into Korea through the seas. Observations of sand dust storm in the domestic and the source regions are also essential. Such various IOPs should serve as important components of international field campaign such as THORPEX (THe Observing system Research and Predictability EXperiment) through active international collaborations.

The Runoff Characteristics due to Heavy Rainfall in Mountainous River (산지하천의 집중강우에 따른 유출특성에 관한 연구)

  • Kang, Sang-Hyeok;Choi, Jong-In;Park, Jong-Young
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.159-167
    • /
    • 2007
  • In this study, we investigated the application of extending the Huff's method to design discharge being used at present up to the event of concentrated rainfall. As our field study site, we selected Odae Cheon basin in Pheongchang, which was affected by concentrated rainfall in July 2006. Actual concentrated rainfall and design rainfall derived from the Huff's method were used to calculate the discharge and storm water levels, which were compared with the directly measured water-level marks of storm discharges. The results showed that the peak storm discharge from the torrential rainfall was twice higher than the design rainfall. The short term discharges from concentrated rainfall closely corresponded to the rainfall discharges of 150 years storm frequency.

  • PDF