• Title/Summary/Keyword: heavy snow damage

Search Result 68, Processing Time 0.022 seconds

Development of Snow Load Sensor and Analysis of Warning Criterion for Heavy Snow Disaster Prevention Alarm System in Plastic Greenhouse (비닐온실 폭설 방재 예·경보 시스템을 위한 설하중 센서 개발과 적설 경보 기준 분석)

  • Kim, Dongsu;Jeong, Youngjoon;Lee, Sang-ik;Lee, Jonghyuk;Hwang, Kyuhong;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.75-84
    • /
    • 2021
  • As the weather changes become frequent, weather disasters are increasing, causing more damage to plastic greenhouses. Among the damage caused by various disasters, damage by snow to the greenhouse takes a relatively long time, so if an alarm system is properly prepared, the damage can be reduced. Existing greenhouse design standards and snow warning systems are based on snow depth. However, even in the same depth, the load on the greenhouse varies depending on meteorological characteristics and snow density. Therefore, this study aims to secure the structural safety of greenhouses by developing sensors that can directly measure snow loads, and analysing the warning criteria for load using a stochastic model. Markov chain was applied to estimate the failure probability of various types of greenhouses in various regions, which let users actively cope with heavy snowfall by selecting an appropriate time to respond. Although it was hard to predict the precise snow depth or amounts, it could successfully assess the risk of structures by directly detecting the snow load using the developed sensor.

Design of the Business Model to Reduce the Damage of Heavy Snowfall in Greenhouse (온실 폭설 피해경감을 위한 비즈니스 모델 설계)

  • Lee, Jonghyuk;Lee, Sangik;Jeong, Yongjoon;Kim, Dongsu;Lee, Seung-jae;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.61-74
    • /
    • 2021
  • Agriculture is most closely related to weather, and the government pursues stable food production by weather research. However, abnormal weather conditions have occurred frequently around the world in recent years, and stable food production has been threatened. Among them, heavy snow in winter tends to increase in frequency and size, which causes serious damage to greenhouses. Therefore, it is imperative to build a system reflecting various demands to reduce the damage to agricultural facilities caused by heavy snow. A business model can realize this as a way of commercialization, however, no suitable model has been presented to date. Therefore, this study aims to design a representative business model that can establish a safety system by distributing a greenhouse disaster prevention warning system for heavy snow to farms.

An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae (기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정)

  • Jo, Ji-yeong;Lee, Seung-Jae;Choi, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • To prevent and mitigate damage to farms due to heavy snowfall, snow weight information should be provided in addition to snow depth. This study reviews four formulae regarding snow density and weight used in extant studies and applies them in Suwon area to estimate snow weight in Korea. We investigated the observed snow depth of 94 meteorological stations and automatic weather stations (AWS) data over the past 30 years (1988-2017). Based on the spatial distribution of snow depth by area in Korea, much of the fresh snow cover, due to heavy snowfall, occurred in Jeollabuk-do and Gangwon-do. Record snowfalls occurred in Gyeongsangbuk-do and Gangwon-do. However, the most recent heavy snowfall in winter occurred in Gyeonggi-do, Gyeongsangbuk-do, and Jeollanam-do. This implies that even if the snow depth is high, there is no significant damage unless the snow weight is high. The estimation of snow weight in Suwon area yielded different results based on the calculation method of snow density. In general, high snow depth is associated with heavy snow weight. However, maximum snow weight and maximum snow depth do not necessarily occur on the same day. The result of this study can be utilized to estimate the snow weight at other locations in Korea and to carry out snow weight prediction based on a numerical model. Snow weight information is expected to aid in establishing standards for greenhouse design and to reduce the economic losses incurred by farms.

Statistical frequency analysis of snow depth using mixed distributions (혼합분포함수를 적용한 최심신적설량에 대한 수문통계학적 빈도분석)

  • Park, Kyung Woon;Kim, Dongwook;Shin, Ji Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1001-1009
    • /
    • 2019
  • Due to recent increasing heavy snow in Korea, the damage caused by heavy snow is also increasing. In Korea, there are many efforts including establishing disaster prevention measures to reduce the damage throughout the country, but it is difficult to establish the design criteria due to the characteristics of heavy snow. In this study, snowfall frequency analysis was performed to estimate design snow depths using observed snow depth data at Jinju, Changwon and Hapcheon stations. The conventional frequency analysis is sometime limted to apply to the snow depth data containing zero values which produce unrealistc estimates of distributon parameters. To overcome this problem, this study employed mixed distributions based on Lognormal, Generalized Pareto (GP), Generalized Extreme Value (GEV), Gamma, Gumbel and Weibull distribution. The results show that the mixed distributions produced smaller design snow depths than single distributions, which indicated that the mixed distributions are applicable and practical to estimate design snow depths.

The Analysis of Student's Acts within Limits When Encountering Natural Disasters caused by the Degree of Environmental Sensibility of School Facilities according to Natural Disaster Damage: Focusing on High-schools in Seoul Metropolitan Area (재해시 학교시설의 환경적 지각 정도에 따른 학생의 활동제한의 분석: 수도권 고등학교를 중심으로)

  • Min, Chang-Kee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.13 no.4
    • /
    • pp.31-42
    • /
    • 2006
  • This study is about an analysis of the relation between the degree of cognition of student's acts within limits when coping with several types of disaster and the degree of cognition of damage by disasters in the method of multiple regression analysis. The dependent variable is the degree of cognition of student's acts within limits and the independent variable is the degree of cognition of damage by disasters such as heavy snow, typhoon, heavy rain, heat, and yellow sand. A survey of graduates of metropolitan area high-schools has found that there are no difference between girls and boys of the degree of cognition of student's acts within limits when coping with disasters. This study finds that the independent variable, which are playgrounds, animals and plants, streets and roads, altitude and incline, gives positive effect to the degree of cognition of student's acts within limits when coping with typhoon or heavy rain in order. The study also finds that the degree of cognition of student's acts within limits when coping with heavy snow is affected positively by streets and roads, playgrounds, altitude and incline in order. It also shows that there are factors that has an effect to the degree of cognition of student's acts within limits when coping with yellow sand and heat. This study proposes suggestions to facility plans based on these facts discovered.

Estimation of Snow Damages using Multiple Regression Model - The Case of Gangwon Province - (대설피해액 추정을 위한 다중회귀 모형의 적용성 평가 - 강원도 지역을 중심으로 -)

  • Kwon, Soon Ho;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2017
  • Due to the climate change, damages of human life and property caused by natural disaster have recently been increasing consistently. In South Korea, total damage by natural disasters over 20 years from 1994 to 2013 is about 1.0 million dollars. The 13% of total damage caused by heavy snow. This is smaller amount than the damage by heavy rainfall or typhoon, but still could cause severe damage in the society. In this study, the snow damage in Gangwon region was estimated using climate variables (daily maximum snow depth, relative humidity, minimum temperature) and scoio-economic variables (Farm population density, GRDP). Multiple regression analysis with enter method was applied to estimate snow damage. As the results, adjusted R-square is above 0.7 in some sub-regions and shows the good applicability although the extreme values are not predicted well. The developed model might be applied for the prompt disaster response.

Probable annual maximum of daily snowfall using improved probability distribution (개선된 확률밀도함수 적용을 통한 빈도별 적설심 산정)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.259-271
    • /
    • 2020
  • In Korea, snow damage has happened in the region with little snowfalls in history. Also, accidental damage was caused by heavy snow leads and the public interest on heavy snow has been increased. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted on different points. The characteristics of snow data commonly are not the same as the rainfall data. Some southern coastal areas in Korea are snowless during the year. Therefore, a joint probability distribution was suggested to analyze the snow data with many 0s in a previous research and fitness from the joint probability distribution was higher than the conventional methods. In this study, snow frequency analysis was implemented using the joint probability distribution and compared to the design codes. The results were compared to the design codes. The results of this study can be used as the basic data to develop a procedure for the snow frequency analysis in the future.

Case Studies of Meteorological Disasters and Structural Safety Test of Ginseng Houses (인삼 제배 시설의 기상재해 사례 및 구조 안전성 검토)

  • Nam, Sang-Woon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.339-342
    • /
    • 2003
  • According to the results of structural safety analysis, allowable safe snow depth for type B(wood frame with single span) was 25.9cm, and those for type A(wood frame with multi span) and type C and D (steel frame with multi span) were 17.6cm, 25.8cm, and 20.0cm respectively. An experiential example study on meteorological disasters indicated that a strong wind damage was experienced once every 20 years, and a heavy snow damage once every 9.5 years. The most serious disaster was a heavy snow and it was found that a half break or complete collapse of structures were experienced by about 70% of farmhouses.

  • PDF

The Meteorological Disaster Analysis for the Natural Disaster Mitigation in the Korean Peninsula (자연재해 저감을 위한 한반도 피해 현황 분석)

  • Park, Jong-Kil;Choi, Hyo-Jin;Jung, Woo-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.319-322
    • /
    • 2007
  • This study aims to find the characteristics of damage and states of natural disasters at the Korean Peninsula from 1985 to 2004. Using the data of Statistical yearbook of calamities issued by the National Emergency Management Agency and Annual Climatological Report issued by the Korea Meteorological Administration. we have analyzed the cause, elements, and vulnerable regions for natural disasters. Major causes of natural disaster at Korean Peninsula are four, such as a heavy rain, heavy rain typhoon, typhoon, storm snow, and storm. The frequency of natural disaster is the highest from June to September. The period from December to March also shows high frequency. The total amount of damage is high during the summer season(Jul.-Sept). The period from January to March shows relatively high amount of damage due to storm and storm snow The areas of Gangwon-do, Gyeongsangnam-do and Gyeongsangbuk-do are classified the vulnerable region for the natural disasters. By establishing mitigation plans which fit the type and characteristics of disaster for each region, damage from disaster can be reduced with efficient prevention activities.

  • PDF

Regional snows scenario for the support systems Analysis (지역별 제설 시나리오 응원체계 구축연구)

  • Kim, Heejae;Oak, Youngsuk;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • Because of abnormal weather, a heavy snow on the Northern latitudes occurs frequently. This has resulted in significant damage and recovery costs. In korea, it has been declared a special disaster area due to heavy snowfall in Gangneung and Pohang 2004, 2005 and 2011, so there was a revision of action instruction for the road snow removal. Although, in our current system, snow removing methodology, regional equipment holdings, and snow responsible interval, respectively, has been classified by the National Highway, near cities and provinces support system not yet prepared. Only, if snow removing is not possible within the region itself, which contained the contents of "support and assistance to military or nearby offices requests". In this thesis, we studied the disaster scenario development according to heavy snow and the response and support system to the features of each regional. For the scenario deduction, we preferentially collected day snowfall and disaster yearbook data to regionals, classified similar pattern and plotted GIS snow map. We also classified heavy snow disaster by region and type and we deduced five-step scenario. The five-step scenario is nationwide(1st-stage), the National Capital region(2nd-stage), the Chungcheong Provinces(3rd-stage), the Kangwon province(4th-stage) and the Ch?l a provinces(5th-stage). Therefore we build near provinces support system according to five-step scenario.