• Title/Summary/Keyword: heavy metal Pb

Search Result 1,394, Processing Time 0.026 seconds

Investigation of Heavy Metal Contents by Milling Degrees of Rice (쌀의 도정도에 따른 중금속 함량 변화)

  • Kim, Jin-Kug;Lee, Ji-Hwan;Kim, Ji-Eun;Bae, In-Ae;Kim, Kwang-Seon;Lee, Eun-Suk;Kwon, Soon-Duck;Park, Ju-Hwan;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.303-308
    • /
    • 2015
  • BACKGROUND: Recently, various rice by milling degree is sold for health and taste. To provide safe food to consumers, it is need to know the change of heavy metal contents according to milling degree of rice.METHODS AND RESULTS: This study was to investigate residual the levels of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) as stated in the milling degree of the rice contaminated Cd and Pb from 2011 to 2012 in Chungcheongnam-do. Rice samples exceeded the maximum residue limits (MRL) of Cd and Pb were milled by five degrees (0.0, 2.45, 8.02, 10.48, 15.09%). Milled rice was digested by microwave method, and analyzed heavy metal contents using ICP-OES. Recovery ratios of 4 heavy metals such as Cd, Pb, Cu and Zn were ranged for 79.7-98.9%, and limits of detection (LOD) and limits of quantitation (LOQ) were fulfilled with the normal analytical standards. Concentrations of Cd, Pb, Cu and Zn were ranged 0.416-0.433 mg/kg, 0.183-0.26 mg/kg, 3.639- 3.882 mg/kg and 16.868-19.801 mg/kg, respectively.CONCLUSION: From these results, conforming with increase of milling degree of rice, Cd, Pb, Cu, and Zn contents tended to decrease. The contents of heavy metals were decreased 3.1% in Cd, 29.3% in Pb, 6.4% in Cu and 15.1% in Zn, in according to the highest milling degree of 15.09%.

Assessment of the Heavy Metal Contamination in Paddy Soils Below Part of the Closed Metalliferous Mine (폐금속광산 하류 논토양의 중금속 오염도 평가)

  • Kim, Min-Kyeong;Hong, Sung-Chang;Kim, Myung-Hyun;Choi, Soon-Kun;Lee, Jong-Sik;So, Kyu-Ho;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.6-13
    • /
    • 2015
  • BACKGROUND: Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination for agricultural soils and crops in the these areas. METHODS AND RESULTS: This experiment was carried out to investigate the assessment of the heavy metal contamination in paddy soils located on downstream of the closed metalliferous mine. The average total concentrations of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), and arsenic (As) in paddy soils were 8.88, 56.7, 809, 754, and 37.9 mg/kg, respectively. Specially, the average concentrations of Cd, Pb and Zn were higher than those of warning criteria for soil contamination(4 mg/kg for Cd, 200 mg/kg for Pb, and 300 mg/kg for Zn) in agricultural soil established by Soil Environmental Conservation Act in Korea. The proportions of 0.1 M HCl extractable Cd, Cu, Pb, Zn, and As concentration to total concentration of these heavy metals in paddy soils were 27.7, 21.3, 35.1, 13.8 and 10.5%, respectively. The pollution index of these five metals in paddy soils ranged from 0.42 to 11.92. Also, the enrichment factor (EFc) of heavy metals in paddy soils were in the order as Cd>Pb>Zn>Cu>As, and the enrichment factor in paddy soil varied considerably among the sampling sites. The geoaccumulation index (Igeo) of heavy metals in soils were in the order as Cd>Pb>Zn>Cu>As, specially, the average geoaccumulation index of Cd, Pb, and Zn (Igeo 2.49~3.10) were relatively higher than that of other metals in paddy soils. CONCLUSION: Based on the pollution index, enrichment factor, and geoaccumulation index for heavy metal in paddy soils located on downstream of closed metalliferous mine, the main contaminants are mine waste materials and mine drainage including mine activity.

Heavy Metal Contamination of Indoor, Outdoor and Playground in Middle and High School in the Jeonju-City, Korea (전주시내 중고등학교 실내.외 환경의 중금속 오염에 대한 연구)

  • 조규성
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.495-503
    • /
    • 2000
  • Dust samples were collected from 17 middle and high schools in the Jeonju-city. heavy metal concentrations were determined for the dry-deposited dusts from indoor and outdoor of classroom and playground of each sampling site. Concentrations of Cd, Cr, Cu, Ni, Pb and Zn in indoor\`s dusts were highly concentrated. Also heavy metal concentrations in outdoor\`s dusts were similar to that of indoor\`s dusts. Concentrations of Cd, Cu, and Zn in the dusts were much higher than the world average contents in soil and environmental orientation value. These levels are similar to those of the dust samples at middle schools located at Kangseo-gu and Yangchon-gu , Seoul. Playground dusts in 6 schools exhibited the enhanced heavy metal pollution with a pollution index (by Kloke) greater than 1.0. Most indoor and outdoor dusts exhibited the enhanced heavy metal pollution with a pollution index(by Cullbard et al.) greater than 1.0.

  • PDF

Determination of Heavy Metal Contents in Medicinal Herb (유통 한약재의 중금속 함량 조사)

  • Lee, Mi-Kyung;Park, Jung-Suk;Lim, Hyun-Cheol;Na, Hwan-Sik
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.253-260
    • /
    • 2008
  • Comparative study was performed on heavy metal contents among domestic herbal medicines and imported one. The heavy metal contents in 89 samples of 65 types of herbal medicines were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES) and mercury analyzer. The mean values of heavy metal contents (mg/kg) for herbal medicines were as follows: Hg, 0.010 (domestic: 0.010, imported: 0.010); Pb, 0.380 (domestic: 0.311, imported: 0.449); Cd, 0.080 (domestic: 0.101, imported: 0.059); As, 2.085 (domestic: 1.845, imported: 2.324); Mn, 31.564 (domestic: 33.844, imported: 29.283); Zn, 15.436 (domestic: 18.703, imported: 12.168); Cu, 3.406 (domestic: 3.374, imported: 3.437); Fe, 134.944 (domestic: 108.327, imported: 161.561). The measured values of Hg, Pb and Cd of domestic and imported herbal medicines showed lower levels than the recommended levels of those in herbal medicines by WHO/PHARM (Pb : not more than 5 mg/kg, Cd : not more than 0.3 mg/kg). This results will he used as a basic data for the future legislation on the regulation and control of heavy metal contents of herbal medicines.

Heavy Metal Contamination in Surface Sediments from Masan and Jinhae Bay, Southeast Coast of Korea (남해 동부해역 임해공단 연안퇴적물의 중금속 오염: 마산만 및 진해만)

  • Cho, Yeong-Gil;Lee, Chang-Bok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.302-313
    • /
    • 2012
  • Concentrations of selected heavy metals (Al, Fe, Mn, Cr, Cu, Ni, Zn, Pb, As and Cd) in surface sediments from 96 sites in Masan and Jinhae Bay were studied in order to understand metal contamination. Results show that the surface sediments were mainly enriched by Cu (18-294 ppm), Zn (67-568 ppm), Pb (10-120 ppm) and Cd (0.2-3.5 ppm). The coastal zone of Masan Bay was significantly more contaminated than the non-coastal zone, and spatial distribution pattern suggested additional sources of heavy metal input in the coastal area. The enrichment ratio and geoaccumulation index ($I_{geo}$) have been calculated and the relative contamination levels assessed in the study area. The enrichment ratios of Cu, Zn, Pb and Cd in Masan Bay have been observed to be relatively high. $I_{geo}$ results reveal that the study area is not contaminated with respect to Fe, Mn, Cr and Ni; moderately to strongly contaminated with Cu, Zn and Pb; and strongly to strong contaminated with Cd. The high contents of Cu, Zn, Pb and Cd in the study area result from anthropogenic activities in the catchment area. Based on the eight different sediment quality guideline values from USA (ERL, ERM), Canada (TEL, PEL), Australia/New Zealand (ISQG-high, ISQG-low) and Hong Kong (ISQV-low, ISQV-high), sediment quality of Masan and Jinhae Bay was also assessed and characterized.

Remediation of Heavy Metal Polluted Agricultural Field with Spent Mushroom Media

  • Chang, Hee Je;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Environmental pollution from abandoned metal mines has been awarded as serious problem and many techniques have been applied to remediate pollutants. Main objective of this research was to evaluate efficiency of heavy metal sorption capacity of spent mushroom media (SMM) in aqueous and soil matrix. Laboratory batch experiment was conducted and 4 different heavy metals (Cd, Pb, Cu, Zn) were evaluated. In aqueous phase, all 4 heavy metals showed high reduction efficiency ranged from 60-99% and Pb showed the highest sorption efficiency. In case of soil phase, much lower sorption efficiency was observed compared to aqueous phase. The highest reduction efficiency was observed in Cd (average of 38%). With scanning electron microscopy energy dispersive detector (SED-EDS) analysis, we confirmed sorption of heavy metals at the surface of SMM. Overall, SMM can be used as sorption materials for heavy metals in both aqueous and soil matrix and more research should be conducted to increase sorption efficiency of SMM in soil.

Distribution of Heavy Metal Contents in Sediment of the Lower Kumho River (금호강하류의 저니중 중금속 함량분포)

  • 권오억
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.45-52
    • /
    • 1994
  • This study was performed to investigate the contents of six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) with respect to the particle sizes and depths in sediment collected at nine sites of the lower Kumho river. The mean Cd, Cr, Cu, Ni, Pb and Zn contents in sediment of all sites ranged from 1.59~5.32 mg/kg, 17.4~301.7 mg/kg, 23.2~399.9 mg/kg, 9.48~116.8 mg/kg, 31.1~294.1 mg/kg and 74.2~964.3 mg/kg, respectively. The highest heavy metal contents was generally found to be Zn and lowest was Cd. The mean contents of heavy metal by particle sizes (1.0~0.5, 0.5~ 0.25, <0.25 mm)was the highest in particle sizes less than 0.25 mm, but the coefficients of variation was lowest in particle sizes less than 0.25 mm. Mean contents and coefficient of variation by depths (0~5 cm, 5~10 cm, 10~15 cm) were generally found to be higher in the upper parts of sediment than in the lower parts of sediment. Organic substances were found to be higher as the particle sizes become more small. Moreover, contents of heavy metal increased with the amounts of organic substances in sediment.

  • PDF

Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies

  • Lim, Ji-Hyun;Kang, Hee-Man;Kim, Lee-Hyung;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Adsorption of heavy metals by sawdust was investigated to evaluate the effectiveness of using sawdust to remove heavy metals from aqueous solutions. Kinetic and isotherm studies were carried out by considering the effects of initial concentration and pH. The adsorption isotherms of heavy metals fitted the Langmuir or Freundlich model reasonably well. The adsorption capacity of metal was in the order $Pb^{2+}$ > $Cu^{2+}$ > $Zn^{2+}$. A high concentration of co-existing ions such as $Ca^{2+}$ and $Mg^{2+}$ depressed the adsorption of heavy metal. Adsorption data showed that metal adsorption on sawdust follows a pseudo-second-order reaction. Kinetic studies also indicated that both surface adsorption and intraparticle diffusion were involved in metal adsorption on sawdust. Column studies prove that sawdust could be effective biosorbent for the removal of heavy metals from aqueous phase.

The Effects of the Heavy Metal Ions on the Hydration and Microstructure of the Cement Paste (중금속이온이 시멘트의 수화 및 미세구조에 미치는 영향)

  • 김창은;이승규
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.967-973
    • /
    • 1993
  • The effect on the hydration of cement was that Cu and Pb reacted with alkali to form soluble hydrates at theinitial stage and then there followed a slow reaction forming insoluble metal hydroxides. These hydroxides were deposited on the surface of cement particles providing a barrier against further hydration. But as a slow reaction continued, the insoluble layers were eventually destroyed and the hydration reaction resumed. Thereafter, another retardation occured by restricting the polymerization of silicates, shown by FT-IR spectroscopy analysis. In the case of Cr, as its reaction with cement caused H2O, the coordinator of Cr complex, to replace or polymerize with OH-, the formation of Cr complex promoted the leakage of OH- and increased the heat of dissolution. So the total heat evolution during hydration was larger than that in the case of Pb or Cu. The retarding effect of heavy metal ions was in the order Pb>Cu>Cr.

  • PDF

Heavy Metal Accumulation Analyses of the Korean Water Deer (Hydropotes inermis argyropus) in Cheorwon, Gangwon Province and the Eastern Part of Jeonnam Province (강원도 철원지역과 전라남도 동부지역에 서식하는 한국고라니(Hydropotes inermis argyropus)의 중금속 축적 분석)

  • Park, Bo-Hyeon;Kim, Baek-Jun;Lee, Sang-Don
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.363-368
    • /
    • 2009
  • The Korean water deer (Hydropotes inermis argyropus) is an endemic species and one of the common species in Korea. The species ranges throughout the Korean peninsula and plays an important role as herbivores in natural ecosystem. Therefore, the species could be used as a good bio-indicator to monitor the quality of habitats. This study was to estimate the concentrations of five heavy metals (Fe, Cu, Zn, Cd and Pb) from three different organs (kidney, liver and spleen) in the Korean water deer. According to the analyses of heavy metal accumulations, the concentration of Fe is higher than Cu, Zn, Cd and Pb from all the organs. Among the organs, spleen (286.50) showed higher heavy metal concentrations than kidney (39.40) and liver ($23.21\;{\mu}g\;g^{-1}$). In general, the concentrations of the heavy metals were about two times higher in Cheorwon, Gangwon province than in the Eastern part of Jeonnam province. In particular, Cd and Pb showed a significant difference (P<0.05). Except for Fe in spleen, all of the heavy metal concentrations were below background levels.