• Title/Summary/Keyword: heating capacity

Search Result 677, Processing Time 0.035 seconds

A Study for the Methodology of Analyzing the Operation Behavior of Thermal Energy Grids with Connecting Operation (열 에너지 그리드 연계운전의 운전 거동 특성 분석을 위한 방법론에 관한 연구)

  • Im, Yong Hoon;Lee, Jae Yong;Chung, Mo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • A simulation methodology and corresponding program based on it is to be discussed for analyzing the effects of the networking operation of existing DHC system in connection with CHP system on-site. The practical simulation for arbitrary areas with various building compositions is carried out for the analysis of operational features in both systems, and the various aspects of thermal energy grids with connecting operation are highlighted through the detailed assessment of predicted results. The intrinsic operational features of CHP prime movers, gas engine, gas turbine etc., are effectively implemented by realizing the performance data, i.e. actual operation efficiency in the full and part loads range. For the sake of simplicity, a simple mathematical correlation model is proposed for simulating various aspects of change effectively on the existing DHC system side due to the connecting operation, instead of performing cycle simulations separately. The empirical correlations are developed using the hourly based annual operation data for a branch of the Korean District Heating Corporation (KDHC) and are implicit in relation between main operation parameters such as fuel consumption by use, heat and power production. In the simulation, a variety of system configurations are able to be considered according to any combination of the probable CHP prime-movers, absorption or turbo type cooling chillers of every kind and capacity. From the analysis of the thermal network operation simulations, it is found that the newly proposed methodology of mathematical correlation for modelling of the existing DHC system functions effectively in reflecting the operational variations due to thermal energy grids with connecting operation. The effects of intrinsic features of CHP prime-movers, e.g. the different ratio of heat and power production, various combinations of different types of chillers (i.e. absorption and turbo types) on the overall system operation are discussed in detail with the consideration of operation schemes and corresponding simulation algorithms.

Effect of dietary supplement with fermentation feed on the physicochemical properties of pork (발효 사료 첨가가 돼지고기의 이화학적 특성에 미치는 영향)

  • Park, W.J.;Sung, C.K.;Kim, G.J.
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • The results on the chemical characteristics of the pork fed with fermented feeds are summarized as follows; 1) The pork treated with fermented feeds had lower fat and higher protein content than control pork in proximate compositions. It is considered to be the improvement of the quality. 2) It was not recognized to the difference of oxidation level among the sample porks. 3) Oleic acid was the highest concentration in the components of fatty acid of pork. The rate of the saturated and unsaturated fatty acids is 38.8 % : 59.9 % in the ordinary meat, 40.8 % : 57.8 % in the a high-grade meat, and 36.3 % : 62.0 % in the pork treated with fermented feeds. In addition, the essential fatty acid content of them is 14 %, 11.2 %, and 16.7%, respectively. 4) Glutamic acid was the highest composition in total amino acids and the essential amino acid content was 39% in both an ordinary meat and the pork treated with fermented feeds, and 14 % in high-grade meat. 5) It was no difference in the inorganic content among the samples. The water holding capacity by extraction meat juice was higher to 92 % in the pork treated with fermented feeds and 15.6 % in a loss in quantity by heating than others. Thus, the pork bred with fermented feeds was evaluated to be good in terms of processing and cooking.

  • PDF

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

Characteristics of Soil Conditioner Pellets Fabricated by Self-propagating Combustion Methods Using Coal Refuse (석탄폐석의 자열소성을 이용한 토양개량용 펠릿의 제조와 특성)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Nam, Chul-Woo;Park, Chong-Lyuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.379-386
    • /
    • 2008
  • Calcined clay granules (pellet) have been used as a soil conditioner. The space among the pellets can secure drainage of water in soil and, simultaneously, can keep water for plants in the inner pore of that. However, the usage of the pellet has been restrained because fabrication of that requires a high energy and cost for heating over the temperate of $1000^{\circ}C$. Recently, SCS(Self-propagating Combustion and Sintering) method was developed and this method use the combustion energy of the preliminary mixed combustible. The SCS method is suitable to fabrication of small porous aggregate and requires a very low cost. This research applied the SCS method to coal refuses for fabrication of soil conditioner pellets. The coal refuses were pulverized under the size of $100{\mu}m$ and the pulverized powders were pelletized to the size of 4~6mm. The pellets were heated at the temperature of $1200^{\circ}C$ in the SCS furnace that was specially prepared for this research. Characteristics of the pellets were investigated and were compared with that of ordinary calcined clay pellet of kaolin; porosity, pore size distribution, bulk density, pH and etc.. Characteristics of the moisture retention in the pellets were measured by the centrifugal method: ASTM D425-88. The pellets of the coal refuses showed the higher values of the field capacity and the plant-available water than that of kaolin pellet. These results suggest the very low cost process that can utilize the coal refuses and can fabricate the lightweight porous soil conditioner of the very high plant-available water.

Effects of Dietary Supplementation of Condensed Molasses Soluble (CMS) on Growth Performance and Meat Quality in Growing-finishing Pigs (사료 내 condensed molasses soluble (CMS)의 첨가가 육성비육돈의 생산성 및 육질에 미치는 영향)

  • Kim, Ki Hyun;Song, Il-Hwan;Chun, Ju Lan;Jeon, Jung-Hwon;Seo, Kangmin;Nam, Ki-Taeg
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.427-434
    • /
    • 2020
  • This study was conducted to investigate the effects of dietary supplementation with condensed molasses soluble (CMS), which has economically benefitted as an alternative ingredient of molasses, on growth performance and meat quality in growing-finishing pigs. A total of 160 cross-bred growing pigs (LY×D) having body weight 27.3±1.78 kg, were allotted to 1 of the 4 treatment groups with 4 replications each, in a completely random block design. The experimental diet consisted of a basal diet (CON), with supplementation of molasses 3% (MOL 3.0), CMS 1.5% (CMS 1.5), and CMS 3% (CMS 3.0) to basal diet. Feed and water were provided ad libitum for 70 days. We observed higher feed intake in the MOL 1.5, CMS 1.5, and CMS 3.0 groups than CON group. The final body weight and weight gain were significantly improved in the CMS 3.0 group (p<0.05), as compared to CON group. Evaluation of the meat quality revealed no significant difference in water holding capacity, heating loss, and pH, among all experiment groups. This study indicates that feeding CMS results in improved growth performance in growing-finishing pigs without deterioration in meat quality, and has the potential to be used as an alternative ingredient of molasses in swine feed.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

The Newest Technology Development and Commercialization Status of Coal Gasification (석탄가스화 기술의 최신 개발 동향 및 상업화 현황)

  • Lee, Jin-Wook;Yun, Yongseung;Kang, Won-seok
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.150-163
    • /
    • 2015
  • Gasification technology is one of the representative next-generation fossil fuel utilization technologies, converting low grade fossil fuels such as coal, heavy residue oil, pet-coke into highly clean and efficient energy sources. Accordingly, related market demand for gasification technology is ever increasing steadily and rapidly. A few years ago, conventional pulverized coal utilization technology had an edge over the gasification technology but the most significant technical barrier of limited capacity and availability has been largely overcome nowadays. Futhermore, it will be more competitive in the future with the advancement of related technologies such as gas turbine, ion transfer membrane and so on. China has recently completed a commercialization-capable large-scale coal gasification technology for its domestic market expansion and foreign export, rapidly becoming a newcomer in the field and competing with existing US and EU technical leadership at comparable terms. Techno-economic aspect deserves intensive attention and steady R&D efforts need to continue in organized, considering that gasification technology is quite attractive combined with $CO_2$ capture process and coal to SNG plant is economically viable in Korea where natural gas is very expensive. In the present paper, recent technology development and commercialization trend of many leading companies with coal gasification expertise have been reviewed with significant portion of literature cited from the recently held '2014 Gasification Technology Conference'.

A Numerical Study on the Efficiency of an Industrial Furnace for Oxygen Combustion Conditions (산소부화용 공업로의 운전조건이 열효율에 미치는 영향)

  • Kim, Kang-Min;Lee, Yeon-Kyung;Ahn, Seok-Gi;Kim, Gyu-Bo;Yoo, In;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.82-88
    • /
    • 2015
  • After a reheating furnace installation, the modification of the size and the heat capacity is very difficult. Therefore, the development of design package tool is required for the computation on the correct specifications before the design and the installation. Prior to development of the design tool, a module that calculates the amount of heat loss of each part according to the specifications for determining the thermal efficiency of a continuous heating furnace was developed and applied to the oxy-fuel industrial furnace. Through this, the effects of fuel type, oxygen fraction and recirculation on the efficiency of the furnace of which the output is 110Ton/hour were analyzed. In oxy-fuel combustion condition, the efficiency was 15% higher than air combustion conditions. With the using COG(Coke Oven Gas) instead of LNG, the efficiency was slightly increased. In the air combustion condition, the efficiency was increased about 33% with the preheated air. But, in oxy-fuel condition, the amount of exhaust gas was reduced, so the efficiency was increased about 7%.

Analysis of Ammonium Carbamate Used as a NOx Reducing Agent for the SCR System of Marine Diesel Engines (선박용 디젤엔진 SCR 시스템에 NOx 환원제로 사용되는 암모늄 카바메이트의 물질 성분 분석 연구)

  • Kim, Hongsuk;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.751-758
    • /
    • 2020
  • SCR technology, which uses urea-water as a NOx reducing agent, has been widely used to reduce NOx in marine diesel engines. However, as an alternative NOx reducing agent, solid-phase ammonium carbamate has several advantages, such as low-temperature NOx reduction performance and NH3 storage capacity. This study presents a method for evaluating the purity of ammonium carbamate using EA, FTIR, and XRD to investigate the change in the material characteristics of ammonium carbamate when it is exposed to various temperature and pressure conditions. In this study, it was found that the purity of ammonium carbamate can be effectively evaluated via EA analysis. The FTIR analysis results confirmed that the properties of ammonium carbamate did not change even after repeated heating and cooling under thermal decomposition temperature conditions, which may be applied to the SCR system of marine diesel engines. Additionally, it was found that when ammonium carbamate was exposed to the atmosphere for a long time, it transformed into ammonium carbonate.

Analysis of Environment Factors in Pleurotus eryngii Cultivation House (새송이버섯 재배사의 환경요인 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.200-206
    • /
    • 2003
  • Pleurotus eryngii(King oyster) is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the year round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation house(A,B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. this experiment was conducted for about two-month from Nov. 11, 2002 to Dec. 30, 2002 in Eryngii. cultivation house-A, B. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Maximum air temperature difference between the upper and lower growth stage during a heating time zone was about 2~3$^{\circ}C$. The max. and min. relative humidity were ranged approximately 60~100%, and average relative humidity was ranged approximately 80~100%. And $CO_2$concentration increased until maximum 1,600~1,800 ppm with the passing growing period. The illuminance in cultivation house was widely distributed from 20lx to 160 lx in accordance with position, and it was maintained lower than the recommended illuminance range 100~200 lx. The average yield per bottle was about 67~85g. But the optimal productivity will be evaluated by considering the quality and quantity of mushroom production, energy requirements, facility construction and management cost, etc.