• Title/Summary/Keyword: heat-polymerization

Search Result 147, Processing Time 0.024 seconds

A STUDY ON THE ADHESIVENESS OF SILICONE AND POLYURETHANE SHEET IN MAXILLOFACIAL PROSTHESES (악안면 보철용 폴리우레탄과 실리콘의 접착도에 관한 실험적 연구)

  • Cho, Sang-Jun;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.833-849
    • /
    • 1996
  • The material of choice for functional and esthetic reconstruction of maxillofacial defects is silicone. Silicone has appropriate physical properties for maxillofacial prosthesis but it has weak edge strength. Therefore, a proper combination of silicone and polyurethane sheet is recommended to improve this weakness. Various primers are also used to enhance the adhesive strength between silicone and polyurethane sheet. The purpose of this study was to determine the adhesive strength of silicone and polyurethane sheet. Silicone elastomer mixture was made by admixing MDX4-4210 elastomer (40%) and Silastic Medical Adhesive Type A(60%). This silicone elastomer mixture was attached to polyurethane sheet, using one of three different primers(1205, S-2260, or A-304), treated for 1, 2, 4, 6, and 8 hours. These were then polymerized in room temperature, dry-heat oven or microwave oven. Six specimens per each group, a total of 270 specimens were prepared for final test. The differences of T-peel bonding strengths were then determined by a test. The differences of T-peel bonding strengths were then determined by a test method that was recommended by American Society for Testing and Materials C794-80. The results were statistically analyzed using the ANOVA and Mutiple Range Tests(Tukey' HSD). The reults were as follow. 1. Type of primer, primer reaction time, and methods of polymerization showed significant correlation on the T-peel bonding strengths in adhesiveness between silicone and polyurethane sheet. 2. A-304 primer showed statistically higher in T-peel bonding strength than otehr type of primers except for the polymerization in microwave oven with reaction times of 2, 6 hours(p<0.05). 3. No significant differences in T-peel bonding strength were observed among the polymerization methods. 4. The effect of reaction time by the primer type and polymerization method showed statistically significant differences in bonding strength among different reaction times. And in most cases, reaction time of 1 or 2 hours showed higher T-peel bonding strength.

  • PDF

Synthesis of Polyacrylonitrile as Precursor for High-Performance Ultrafine Fibrids

  • Kim, Subong;Kuk, Yun-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.407-414
    • /
    • 2014
  • Polyacrylonitrile (PAN) copolymers with different methyl acrylate (MA) contents were synthesized via solution polymerization and used as precursors for high-performance PAN ultrafine fibrids. The chemical structures of the copolymers were characterized using Fourier-transform infrared spectroscopy and $^{13}C$ nuclear magnetic resonance spectroscopy. Their particle sizes and aspect ratios increased with increasing viscosity, and the degree of crystallinity increased with decreasing concentration of copolymer solution. In contrast, their peak temperature and heat of exotherm increased with decreasing concentration of the copolymer solution. The aromatization indices (AIs) of the fibrids increased with increasing heat-treatment time; however, the AIs decreased when the heat-treatment temperature was higher than the onset temperature of the copolymers. On the other hand, the crystal sizes of the fibrids decreased with increasing concentration of the copolymer solution when the MA content was held constant.

Polymerization Behavior of Self-healing Agents for Damage Repair in Composite Materials (복합재 손상보수용 자가치료제의 중합 거동)

  • Oh, Jinoh;Yoon, Sungho;Jang, Seyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2014
  • Thermal analysis properties and adhesive properties of self-healing agents were evaluated through differential scanning calorimetry, reaction heat measurement, and adhesive shear test. D1E0, D3E1, D1E1, D1E3, and D0E1, depending on the mixing ratio of DCPD and ENB, were considered as self-healing agents. The amount of Grubbs' catalyst, depending on the type of self-healing agents, was varied from 0.1 wt% to 1.5 wt%. In the case of DCPD, the polymerization reaction occurred faster and the stabilized adhesive strength increased as the amount of catalyst increased; however, a large amount of catalyst was required. ENB had excellent reactivity with a small amount of the catalyst; however, high reaction heat was observed at the early stage of polymerization. Thermal analysis properties and adhesive properties of self-healing agents can be controlled by varying a mixing ratio of DCPD and ENB. Among the self-healing agents used for this study, the D3E1 would be one of the most preferable candidates with regard to maximum adhesive strength, reaching time to maximum adhesive strength, stabilized adhesive strength, and reaction heat.

A Study on making polyester silk-like (Polyester 섬유의 silk화에 관한 연구)

  • Cha Ok Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.5 no.1
    • /
    • pp.27-30
    • /
    • 1981
  • The change of physical properties of polyester yarn treated with sodium hydroxide solution for making polyester silk like was investigated. The tenacity of polyester yarn was reduced by increasing alkali concentration and temperature. Degree of polymerization of polyester was decreased slightly but the heat of fusion was not changed appreciably.

  • PDF

A study on damage prediction analysis for styrene monomer fire explosion accidents (스티렌 모노머 화재폭발사고 피해예측 분석에 관한 연구)

  • Hyung-Su Choi;Min-Je Choi;Guy-Sun Cho
    • Industry Promotion Research
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • This study selected the worst-case scenario for fireball and vapor cloud explosion (VCE) of a styrene monomer storage tank installed in a petrochemical production plant and performed damage prediction and accident impact analysis. The range of influence of radiant heat and overpressure due to fireball and vapor VCE during the abnormal polymerization reaction of styrene monomer, the main component of the mixed residue oil storage tank, was quantitatively analyzed by applying the e-CA accident damage prediction program. The damage impact areas of radiant heat and explosion overpressure are analyzed to have a maximum radius of 1,150m and 626m, respectively. People within 1,150m of radiant heat of 4kW/m2 may have their skin swell when exposed to it for 20 seconds. In buildings within 626m, where an explosion overpressure of 21kPa is applied, steel structures may be damaged and separated from the foundation, and people may suffer physical injuries. In the event of a fire, explosion or leak, determine the risk standards such as the degree of risk and acceptability to workers in the work place, nearby residents, or surrounding facilities due to radiant heat or overpressure, identify the hazards and risks of the materials handled, and establish an emergency response system. It is expected that it will be helpful in establishing measures to minimize damage to workplaces through improvement and investment activities.

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

A Study on the Preparation of Poly(vinyl alcohol) Polarizing Film (폴리비닐알코올 편광필름 제조에 관한 연구)

  • 김삼수;우화령;류원석
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.19-25
    • /
    • 2004
  • Both poly(vinyl alcohol)$(PVA)-I_2$ and PVA-dye polarizing film were prepared using PVA with number-average degree of polymerization of 1,700, 2,300, 2,600. The optical property of used dye in this study closed to the that of iodine. The PVA-dye polarizing film was prepared through the dyeing process. In comparison of the result of the measurement of the heat and humidity resistance of two types polarizing films, it of PVA-dye polarizing film was higher than that of a conventional $PVA-I_2$polarizing film. The transmittance and the polarization efficiency of PVA-dye polarizing film was significantly influenced by dye concentration, dipping time, salt concentration, and temperature of dye bath. The PVA-dye polarizing film exhibited a high polarization efficiency of 99.3% and a good transmittance of 42.4%.

Steady states and dynamic behavior of an LDPE autoclave reactor

  • Lee, Jin-Suk;Chang, Kil-Sang;Kim, Jae-Yeon;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.813-818
    • /
    • 1989
  • A two compartmented autoclave reactor for the polymerization of low density polyethylene is analyzed with respect to the effects of heat transfer and operation variables. Each compartment being considered as a completely mixed cell, two CSTRs model is proposed. The system shows various multiplicity features of steady state and periodic oscillatory motions. Heat removal efficiency and initiator supplement appear to have significant effect on the conversion of monomer with the temperature properly maintained, which should be taken into account in the reactor design.

  • PDF

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.

Heat resistant characterization of PMDA/4,4`-DDE polyimide of fabricated by vapor deposition polymerization (진공증착중합법에 의해 제조된 PMDA/4,4′-DDE 폴리이미드의 내열 특성)

  • 김형권;이붕주;우호환;이은학;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.154-157
    • /
    • 1996
  • The thin films are fabricated by VDPM and its heat resistant characteristics are investigated using Thermogravimetry. About polyimide, there is a wide difference between 5% weight loss temperature of TG curve and 20,000hr. of life time by methode of ASTM D2307. Therefore, TGI can be obtained by thermogravimetric analysis of NEMA std. pub. NOREI-1974. The TGI was got 670, 674 and 585 at 20$^{\circ}C$, 40$^{\circ}C$ and 70$^{\circ}C$, respectively.

  • PDF