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Steady States and Dynamic Behavior of an LDPE Autoclave Reactor
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B two compartmented autoclave reactor for the polymerization of low density polyethylere is
analyzed with respect to the effects of heat transfer and operation variables. Each

compartment being considered as a completely mixed cell, two CSTRs model is proposed.

The

system shows various multiplicity features of steady state and periodic oscillatory motions.
Heat removal efficiency and initiator supplement appear to have significant effect on the

conversion of monomer with the temperature properly maintained,

account in the reactor design.

INTRODUCTION

Polyethylene is one of the most useful thermoplastic
resins, and the worldwide production is incessantly
increasing for its large industrial applications.
Polyethylenes of high molecular weight are generally
produced in two density grades depending on the
reacting conditions. The low density materials(LDPE)
of roughly 50 % crystallinity requires polymerization
of ethylene at 1000 to 2500 atm and temperatures of
100-300°C in the presence of a peroxide catalyst.
Commercially vessel and tubular reactors are generally
in use.

A vessel reactor, termed as an autoclave, is designed
with a high aspect ratio, divided into two or more
compartments in series by fixed or rotating discs.
Also, characterized by high heat generation, high
viscosity and poor heat transfer, the reactor, stirred
by an impeller mounted on unique shaft, requires a high
power input to maintain good mixing conditions in each
compartment. The reaction progresses rapidly and large
amount of heat is generated. However, due to the
enormous wall thickness of the reactor, heat removal
efficiency is very low, and the temperature is
controlled through a control system that acts on the
initiator injection pump. Therefore, the performance
with respect to the productivity or conversion rate,
excluding the product quality, 1is directly connected
with the initiator consumption rate. Since vessel
reactors are designed for broad operating conditions,
very highly skilled techniques are required to obtain
various qualities of product meeting market demand.

Due to the particular reaction conditions of the LDPE
processes, there have not been reported sufficient
kinetic and operational data. Even the kinetic data
reported by several authors[1-9] are not consistent
with one another. So that many problems still arise in
the reactor operation as well as in the analysis. Here
to investigate the steady states and dynamic responses
of a two compartmented autoclave reactor, we propose
two CSTRs model considering each compartment as a
completely mixed cell with cooling jacket. The feed
materials are introduced into each cell with fixed
temperature and concentration. Since the changes in
operation parameters can directly affect the state of
the reactor and the output of the first cell acts as a
forcing to the second, the steady state and dynamic
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which should be taken into

response hecomes very complicated and remaines far from
our prediction.

Focused on a CSTR or CSIRs in series, some models for
free radical polymerization system have been studied by
several authors{Z,3,5,10-12] concerning the stability
analysis and control problems. Finite number of
discrete cell model may not exactly interpret the
degree of mixing and thermal gradients of the reactor,
because industrial reactors are usually known far from
completely mixed. However, such studies can provide us
with valuable insight into the process almost
precisely, although more facts are still to  be
explored. Our study intends to examine, through the
variations of monomer conversion and reactor
temperatures, how the reactor states are affected by
the heat transfer and the operation parameters.

THE REACTOR MODEL

LDPE polymerization reaction proceeds by a free
radical mechanism which takes place in a homogeneous
phase. A very general reaction steps to be considered
are the initiation, propagation and termination. The
physical properties of the reacting medium, which may
vary depending on the conversion and temperature, are
assumed to be constant throughout the analysis. The
reaction rate constants are also assumed independent of
the polymer chain lengths. Then for two CSTRs as shown
schematically in Fig. 1, the mass halances of monamer,

initiator, and living polymers and energy balance lead
to a set of eight ordinary differential equations, and
can be expressed in dimensionless form as follows.
For the cell 1:
udxy /dr=a~axs —u{2¢fy s Dadexp(ya—ra/wi)

(1)

+x121Dapexp(yp—rp/w1)]

udyy /dr=a—ay -~y Dadexp{ya—ra/v) (2)
pdzy /dr=—azy +u[2¢fy Dagexp(ya~ya/wy)

(3)

-z12Datexp{Fi-ye/wi)l

pdwy /dr=a-awy +u(x1 21 BpDapexp(yp—pp/wi)



+212BtDatexp(ye~ye /w1 )—8{(wi—we) ] (4)
For the cell 2:

(1~p)dxz/dr=1-a+axy~xz2-(1-p) [ 2¢fy2Dadexp(ya~ya/wz)

+x2z2Dapexp(7p-7p/wz) ] (5)
(1-p)dyz/dr=1-a+ays~yz2—(1-p) yzDadexp(ra~ya/wz) (6)
(1) dzz2/dv=azy~z2+(1-p) [2¢fyzDadexp(yd-ya/wz)

(7

-z22Datexp(yt-pi/wz)]
(1-p)dwz/dr=1-a+aws—wz+(1-u) [x2z2BeDapexp(#p—~7p/wz)
(8)

+222BtDacexp(ye—yt/wz)-86{(wa—we) ]
Here the peat effects by the initiation reaction and
tpe ghaln transfer effects are neglected. The
dimensionless parameters used in the equations are
defined as:

xi=Mi/Ms, yi=li/I¢, 2i=Gi/Mt, wi=Ti/Tr, for i=1,2
1=tqo/V, &<UA/pqoCp, @=Ig/Ms, u=V1/V, we=Tc/T¢
a=qy/qo, ¥d4=Ed4/RTt¢, pp=Ep/RTs, p¢=E¢/RTt¢

Bp=(- AHp)Ms/pCpTe, Be=(-AHt)Me/pCpTt
Dad=Vkdoexp{-7d)/qo, Dap=VMrkpoexp(~#p)/qo

Dat=VMskeoexp(=7t}/qo

The steady states can be obtained by solving eight
nonlinear algebraic equations letting all the
derivative terms equal to zero. However, the highly
nonlinear property of the system brings about the
multiplicity problem of solution, which makes the
global analysis very difficult. When there exist
multiple steady states, the stable steady states share
the attraction regions in the phase space and may
produce quite different grades of product. To solve
the steady state behavior of a system, it is often
convenient to examine the dependence of a solution on a
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Fig. 1. Schematic diagram of two compartmented

autoclave reactor model.
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distinguished parameter. Bifurcation theory[13-15]
will be of great help for the comprehensive analysis of
a nonlinear parameter system.

A large class of bifurcation problems with nonlinear
parameter systems can be solved numerically. The’
complete numerical method has been analyzed by H.B.
Keller{16], implemented by the techniques of
continuation of general solution branch with implicit
function theorem and of branch swithing at singular
points, and a practically useful software was written
by E. J. Doedei, called AUTO[17]. The original
method can be applied to the general N-dimensional
steady state equations, and therefore the above eight
equations can be used directly to the program AUTO,
which can provide us with regular and periodic solution
branches of the system with the informations on the
stability properties. The program can also compute the
locus of steady state limit points dividing the
multiplicity regions on parameters plane, and the locus
of Hopf bifurcation points[18,19] from which emerges a
periodic oscillatory motion.

RESULTS AND DISCUSSION

Heat removal effect in the autoclave reactor, which
has been usually neglected in the reactor analysis for
its enormous wall thickness, may have a great influence
with the initiator feed rate on the conversion
efficiency and control policy. Taking the heat
transfer coefficient ¢ and the initiator feed rate <
as changing parameters, with the other parameters fixed
as shown in Table 1, steady state and dynamic features
are investigated in some detail. The calculation
result suggests various and interesting multiplicity
features of steady state and dymamic character of limit
cycles for feasible parameter regions.

Fig. 2 illustrates on the (9,¢)-plane the
multiplicity regions of steady states and the loci of
Hopf bifurcation points. Here, we notice that the
number of steady states increases or decreases by the
number of two when a solid line is crossed over, and
that for large area of low & and high ¢ the reactor
state can be complex having up to five steady states.
The locus of Hopf points shown by a dashed line divides
the plane into regions of different dynamic
stabilities. The dynamic characters may appear quite
differently depending on the regions divided by solid
or dashed lines.

Now fixing ¢=2.34 and taking ¢ as a parameter, the
bifurcation diagram is shown in Fig. 3. For an
operation parameter range, two hysteresis features of
steady state and periodic oscillatory motions are found
as can be expected from Fig. 2. Two periodic solution

Table 1. The values of dimensionless parameters used
in the model analysis.
Dimensionless parameter Numerical value
Bp 4.3329
Bt 1.9859
Dad 1.3854 X 10-8
Dap 4.6175X 104
Dat 1.2163Xx 108
£ 1
We 4/3
a 0.5
74 4,2456 X 101
7e 8.7989
7t 6.6264
H 5/12




branches emanating from independent Hopf points die
away coalescing with the homoclinic orbit of an
unstable saddle point. One notable thing is that a
stable periodic branch, created by a supercritical Hopf
bifurcation, loses its stability at the turning point,
called tangent bifurcation, and an unstable periodic
branch prevails until it dies away. One may note that
an unstable limit cycle acts as a boundary of
neighboring attractors like an unstable saddle point.
Typical stable and unstable limit cycles are drawn in
Fig. 4 with their dynamic patterns. The trajectories
emanating from the unstable steady state or from the
unstable limit cycle tend to the stable limit cycle.
The number of steady states and their dynamic patterns,
depending on the parametric range of o, are tabulated
in Table 2.

When the heat transfer coefficient increases, to
#=2.7 in Fig. 2, we expect one hysteresis feature of
steady state and three Hopf bifurcation points. Fig.
5 illustrates the bifurcational features of steady
. states and periodic motions, in which two Hopf points

@ % 195 are paired and linked by a stable periodic branch and,

we note, another periodic branch from other Hopf point

Fig. 2. Multiplicity regions of steady state and Hopf undergoe§ a couple of tangent bifurcations and a
bifurcation points. homoclinic explosion. Parametric data are given 1in
Table 3. Transient behaviors of conversion and

temperature of a periodic oscillation are shown in Fig.

6. One may note here that the mean conversion of the
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Table 2. Number of steady states and dynamic patterns
in various ranges of ¢ with 6=2.34.
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Fig. 5. Parametric change of steady states and Hopf

bifurcation points when ¢=2.7.

Table 3. Number of steady states and dynamic patterns
in various ranges of ¢ with §=2.7.
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node point
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Fig. 6. Transient behaviors of conversion rate and
temperature of a periodic oscillation when §=2.7 and
#=4.897588 X 10°.

oscillation seems obviously much higher than the value
of unstable steady state. This means that if the
operation parameters are set in this region the
periodic operation is more effective than the steady
state operation though this can be stabilized with the
help of control system., This phenomenon does not occur
very often in usual reactor operation. However, this
fact shows that it can be sometimes beneficial to adopt
a periodic operation.

Another case of &=3.6 has been studied with a
bifurcation diagram as shown in Fig, 7. Here we have
a unique steady state over the whole range of parameter
and two Hopf points linked by a periodic branch gyich
has one turning point. Taking $=4.982353 X 10°, a
limit cycle is drawn in Fig. 8, which shows seemingly
doubly periodic on an invariant torus. This behavior
can be found when a periodic branch loses its stability
by a modulus of a complex Floguet multiplier crossing
over the unit circle. Thorough investigation of this
bifurcational feature is beyond the scope of the
present study and left for later work. Meanwhile, as
can be seen from these bifurcation diagrams, heat
transfer directly effects the temperature reduction of
reacting medium at a fixed initiator concentration.
However, under the temperature allowance of the
reactor, the gross rates of initiation and propagation
can be enhanced further by increasing the initiator
concentration, and this will consequently increase the
conversion of the monomer.
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CONCLUSION

With these model predictions we understand that the
LDPE reaction in an autoclave exhibits very complex
behaviors of steady state and dynmamics. The multiplicy
features are ocasionally very sensitive to some
parameter changes, and the stable steady states and
limit cycles possess their own attraction regions in
the phase space. Since any perturbation in steady
state operation is not allowed beyond its attraction
region, a rigorous control policy should be adopted
concerning the start-up and steady state operation.

Furthermore, effective heat removal and initiator
supplement can enhance the monomer conversion
significantly  without the temperature lift-up

jeopardizing the safety aspect of the reactor. The
reactor design should be developed in this respect for
the maximum performance.

NOTATION

: area(m?)

: dimensionless heat of reaction

p : heat capacity(cal/g- K)

: Damkohler number

: activation energy(cal/gmol)

: initiator efficiency factor

G : concentration of living polymer(mol/1)

-AH : heat of reaction(cal/gmol)

I : concentration of initiator(mol/1}

k : Arrhenius preexponential facto(sec'for decomposi-
tions 1/mol-sec for propagation and termination
reactions)

: concentration of monemer(mol/1)

: flow rate(1/sec)

: time(sec)

: temperature(K)

: heat transfer coefficient(cal/g. m™ sec)

: reactor volume(1)

¢ dimensionless temperature

: dimensionless concentration of monomer

: dimensionless concentration of initiater

: dimensionless concentration of living polymer

N M E oo R

Greek letters

: feed flow rate ratio

: dimensionless activation enrergy

: dimensionless heat transfer coefficient

¢ cell volume ratio

: density of reacting medium{g/1)

: dimensionless time

: ratio of initiator feed concentration
to monomer feed concentration

G AR &= R

Subscripts

1,2 : reactor cell number
¢ ¢ coolant

d : decomposition

f : feed

p : propagation

t : termination
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