• Title/Summary/Keyword: heat treatment processing

Search Result 603, Processing Time 0.022 seconds

Evaluation of Heat Treatment of an Al-Si Alloy forging by Using Its Relationship between Electrical Conductivity and Hardness (경도-전기전도도 상관관계를 이용한 A1-Si 알루미늄합금 열간 단조품의 열처리상태 평가)

  • 이석원;전만수;이준현
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.418-424
    • /
    • 2001
  • In this study, a relationship between hardness and electrical conductivity for an Al-Si aluminum alloy, forged after extruded, is investigated. Microvickers hardness is measured and compared with its corresponding electrical conductivity obtained by the eddy current test. It is found that a distinct relationship between the hardness and the electrical conductivity exists for the material. Using the relationship, the hardness of forging is predicted from the electrical conductivity obtained by eddy current test and the result is used to evaluate the condition of heat treatment.

  • PDF

Effect of Heat Treatment Process on the Shadow Mask Tension (세도우 마스크 장력에 열공정이 미치는 영향)

  • 현도익;문영훈;조종래
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.487-492
    • /
    • 2003
  • Tension variations with heat treatment in shadow mask for flat braun tubes are investigated in this study. In CRT, landing shift of the electron beam due to thermal deformation of the tension mask made the color purity of screen worse. In order to get the final results of thermal deformation, the tensile force within the mask and the welding processes between the rail and the extended mask have to be analysed sequentially. In this study, the effect of heat treatment is studied in terms of tension variations of shadow mask during its manufacturing process.

A study on the sensitivity analysis of processing parameters for the laser surface hardening treatment (레이저 표면 경화처리 긍정변수의 민감도 해석에 관한 연구)

  • 이세환;양영수
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.260-263
    • /
    • 2000
  • A methodology is developed and many used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed for deciding the more effective laser input parameters for laser surface hardening treatment are considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method applied for sensitivity analysis. The interesting processing parameter is taken as the laser scan velocity and characteristic beam radius( $r_{b}$) of the sensitivity of the temperature T versus v and $r_{b}$ is analyzed. And these sensitivity results obtained in another parameters are fixed condition. To verifying the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis compared with the results of an experimental data.ata.

  • PDF

A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite (해포석과 팽창진주암의 복합화에 의한 발포체 제조)

  • Lee, Chul-Tae;Jang, Moonho;Park, Tae-Moon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • Production process of the flexible ceramic foamed body through the complexation with the fiberous sepiolite and expanded pearlite was researched. The processing of fibrillation of the inorganic mineral fiber sepiolite is the most important whole processing for manufacturing of the ceramic foamed body consisting of the expanded perlite and sepiolite. The fibrous sepiolite and expanded pearlite are blended and becomes the slurry phase. And this slurry phase is converted to a massive foamed body through the low temperature heat treatment process less than $300^{\circ}C$. The heat-treatment process of the slurry phase composite has to be designed to include the evaporation step of the moisture remaining among the slurry composition, foaming step by the decomposition of the foaming agent, and resolution removal step of the organic material which was added in the composite remained after the foaming step. The heat treatment process should be considered as significant factors in design of total process. As to the condition of heat treatment process and foaming agent, there was the a correlation. An organic type foaming agent like DSS (dioctyl sodium sulfosuccinte) was effective in foaming of the slurry compound consisting of the expanded perlite and sepiolite fiber.

The Effects of Post-Treatments for Wet Spun PVDF on the Piezoelectric Property (습식방사 된 PVDF 섬유의 후 처리를 통한 결정구조의 변화)

  • Yu, Seung Mi;Oh, Hyun Ju;Hwang, Sang-Kyun;Chung, Yong Sik;Hwang, Hui Yun;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 2013
  • The PVDF (polyvinylidene fluoride) fibers were prepared using the wet spinning processing. To improve ${\beta}$-phase crystalline which closely related piezoelectric property PVDF wet spun fibers conducted post treatment. Post treatment is consisted of heat stretching and annealing process. The heat stretching and annealing conditions were controlled by changing temperature between glass transition temperature and melting temperature. From these experimental data, the resulting crystal structure of the ${\beta}$-phase crystalline was confirmed by FT-IR and XRD experiments. From these analysis results, optimum stretching and annealing conditions of the wet spun PVDF fibers were founded to increase high ${\beta}$-phase crystalline. Furthermore results showed that thermal processing had a direct effect on modifying the crystalline microstructure and also confirmed that heat stretching and annealing could increase the degree of crystallinity and ${\beta}$-phase crystalline. Finally, piezoelectric constant ($d_{11}$) of the post heat treated PVDF fibers reinforced composite were measured to investigate the feasibility for the sensing materials.

Optimal Post Heat-treatment Conditions for Improving Bonding Strength of Roll-bonded 3-ply Ti/Al/Ti Sheets (롤 본딩된 Ti/Al/Ti 3-ply 다층금속 판재의 접합강도 향상을 위한 최적 후열처리 조건 도출)

  • Kim, M.H.;Bong, H.J.;Kim, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.179-185
    • /
    • 2022
  • The influence of post-roll bonding heat treatment conditions such as temperature and time on the variation in the diffusion layer, generated at the bonding interface and the subsequent mechanical properties of the roll-bonded Ti grade 1/Al1050/Ti grade 1 sheets, was systematically investigated. The intermetallic compound (IMC) phase generated by post heat treatment conditions adopted in this study was obviously indexed as monolithic TiAl3. Whereas the thickness of IMC layer generated by annealing at 500 ℃ was approximately 100 nm scale, it drastically increased above 1.5 ㎛ when annealed at 600 ℃. Uniaxial tensile and peel tests were then performed to compare mechanical properties. As a result, the bonding strength drastically increased above 7.9 N/mm by annealing at 600 ℃, which implies that proper annealing condition was a prerequisite, to improving interface bonding strength as well as global elongation properties for Ti/Al/Ti 3-ply sheet.

Effect of Oxygen Content on Aging Properties of Ti-39Nb-6Zr alloy (Ti-39Nb-6Zr 합금의 산소함량에 따른 시효특성 변화)

  • Han, Chan Byeol;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.88-95
    • /
    • 2022
  • Titanium alloy for bio-medical applications have been developed to reduce the toxicity of alloying elements and avoid the stress-shielding effect which is caused by relatively high elastic modulus compared to bone. Ti-39Nb-6Zr (TNZ40) alloy of elastic modulus exhibits around 40 GPa in the case of beta single phase. However, the strength of this alloy is lower than the other types of titanium alloys. Many research found that adding oxygen to beta-titanium alloys is beneficial for improving the strength through solid solution strengthening. In this study, TNZ40 ingots with addition of O were prepared by an arc remelting process (Ti-39Nb-6Zr-0.16O (wt.%), Ti-39Nb-6Zr-0.26O (wt.%)). Thermo-mechanical processing (i.e., heat treatment, cold swaging and aging heat treatment) has been performed under various conditions. Therefore, the aim of this study is to investigate the effect of oxygen content and ω phase formation on microstructure and mechanical properties.

Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod (고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향)

  • JongHyeok Lee;ByoungLok Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.230-236
    • /
    • 2023
  • The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments (단조 금형의 윤활, 표면처리 및 금형 수명 평가)

  • 김병민
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Microstructure and Effective Case Depth of the Vacuum Carburized Steels (진공침탄열처리강의 조직 및 유효경화깊이)

  • Choi, Y.T.;Byoun, S.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.32-40
    • /
    • 1992
  • This content is a part of the results of the study on the development of the vacuum carburizing technology. In this study the vacuum carburizing furnace being used was the furnace that developed through the joint project between KIMM and Kyung-Pook Heat Treating Co. from June 1988 to Nov. 1990. And the used carburizing gas was the propane gas and the introducing methods of the gas applied two methods such as pulse and constant pressure. By this study we established the basis of the furnace manufacturing technology and of the processing technology in the vacuum carburizing. Above all in this work there are notable meanings in a viewpoint of the foremost research in home. Hereafter, we are going to industrialize the vacuum carburizing technology by improving the results of the present work and by developing the process for the mass production.

  • PDF