• Title/Summary/Keyword: heat treatment optimization

Search Result 87, Processing Time 0.032 seconds

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber (전기방사를 이용하여 합성한 BiVO4 나노섬유의 미세구조와 광촉매 특성에 하소 온도가 미치는 영향)

  • Ji, Myeongjun;Kim, Jeong Hyun;Ryu, Cheol-Hui;Ko, Yun Taek;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.

Operational Properties and Microbial Inactivation Performance of Dielectric Barrier Discharge Plasma Treatment System (유전체장벽방전 플라즈마 장치의 조작특성과 살균력)

  • Mok, Chulkyoon;Lee, Taehoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • A dielectric barrier discharge plasma (DBDP) treatment system was fabricated and the optimum operating conditions for the plasma generation were determined in order to explore the potential of cold plasma as a non-thermal proessing technology. The microbial inactivation performance of the system was also evaluated against Staphyloocus aureus. The system consisted of power supply, transformer, electrode assembly and sample treatment plate. The input power was 220 V single phase AC and amplified to 10.0-50.0 kV on a transformer. A pulsed sine wave of frequency 10.0-50.0 kHz was introduced to the electrode embedded in ceramic as a dielectric barrier material in order to generate plasma at atmospheric pressure. Higher currents and consequently greater power were required for the plasma generation as the frequencies increased. A homogeneous and stable plasma was generated at currents of 1.0-2.0, and frequencies of 32.0-35.3 kHz. The optimum electrode-gaps for the plasma generation were 1.85 mm without loaded samples. More power was consumed as the electrode-gaps increased. The practically optimum electrode- gap was, however, 2.65 mm when samples were treated on slide-glasses for microbial inactivation. The maximum temperature increase after 10 min treatment was less than 20$^{\circ}C$, indicating no microbial inactivation effect by heat and thereby insuring a non-thermal method. The DBDP inactivation effect against Staphyloocus aureus increased linearly with treatment time up to 5 min, but plateaued afterward. More than 5 log reduction was achieved by 10 min treatment at 1.25 A.

Optimization of Corrosion Properties of Ti/TiO2/IrO2-RuO2 Electrodes via Taguchi Method (Taguchi법을 이용한 Ti/TiO2/IrO2-RuO2전극의 부식특성 최적화)

  • 이득용;채경선;최형기;예경환;안중홍;송요승
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.582-588
    • /
    • 2002
  • IrO$_2$-RuO$_2$ films were deposited on plasma sprayed TiO$_2$ buffer layer above Ti metal by sol-gel and dip-coating method. Organic vehicle (ethyl cellulose and $\alpha$-terpineol) and glass frit were added to improve adherence of the coatings. Taguchi method and L$_{18}$ (2$^1$$\times$3$^{7}$ ) orthogonal arrays were evalvated in terms of current density to determine the optimal combination of levels of factors that best satisfy the bigger is better quality characteristic. The observed conditions were as fellows: ethyl cellulose (100 cp), drying temperature and time (17$0^{\circ}C$,20 min), heat treatment temperature and time (75$0^{\circ}C$,10 min), the weight ratio of IrO$_2$-RuO/powders to glass frit (99:5), final heat treatment time (120 min) and flow rate of air (5 sccm), respectively. ANOVA analysis suggested that the influence of the factors within $\alpha$= 0.1 was significant with a 90% confidence level.

Effect of CVD Synthesis Temperature on Carbon Nanotube Growth on Basalt Fiber (CVD 합성온도가 바잘트 섬유상 탄소나노튜브 성장에 미치는 영향)

  • Seungjun Yeo;Soyoon Moon;Donghyeon Lee;Dong-Jun Kwon;Mantae Kim
    • Journal of Adhesion and Interface
    • /
    • v.25 no.3
    • /
    • pp.82-87
    • /
    • 2024
  • There is a growing interest in eco-friendly materials to achieve carbon neutrality, and many studies have been published on the use of functional nanoparticles in natural fibers as smart composites. This study is about the optimization of manufacturing parameters for carbon nanotube (CNT) growth by chemical vapor deposition (CVD) on the surface of basalt fiber. Co-Cu-based metal catalysts were prepared by co-precipitation method for CNT growth on the surface of basalt fiber. The catalyst was fixed to basalt fibers through a spray process. The effect of heat treatment temperature conditions and fiber surface conditions on the growth of CNT was evaluated. The growth of CNT was investigated using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to observe changes in their shape and diameter. The tensile strength of the composites using CNT/basalt fiber fabrics and amine-based epoxy as the base material prepared at different heat treatment temperatures was compared and evaluated according to ASTM D3039. We have observed that stable CNT are manufactured at temperatures above 600℃, while carbon nanofibers (CNF) are fabricated at temperatures above 400℃. The sizing material present on the surface of the basalt fiber was a hindrance to CNT growth.

Development of the Pre-treatment Technology for LNG-FPSO (LNG-FPSO용 천연가스 전처리 기술 개발)

  • Jee, Hyun-Woo;Lee, Sun-Keun;Jung, Je-Ho;Min, Kwang-Joon;Kim, Mi-Jin
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.38-42
    • /
    • 2013
  • Submarine gas fields have focused because of the increasing fuel cost, the environmental regulations, and the safety & NIMBY problems. LNG-FPSO which is available for acid gas removal, recovery of the condensate & LPG and Liquefaction in topside process is one of high technology offshore structures. On the other hands, it is necessary to verify the pre-treatment efficiency by the ship motion and to apply to the design for LNG-FPSO. This study is to develop the pre-treatment technology for LNG-FPSO as taking account to the process efficiency by ship motion effects and the area optimization. Based on the simulation results, it founds that hybrid process shows the low circulate rate, the low heat duty and the small size of column dimensions compared to typical amine process. It will be verified the process efficiency in the various conditions by sea states as performing the 6-DOF motion test and CFD simulation.

  • PDF

Optimization of blue berry extraction for beverage production using enzyme treatment (효소처리에 의한 블루베리 음료 생산을 위한 최적추출조건)

  • Ji, Yu-Jeong;Im, Moo-Hyeog
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2017
  • In this study, we tried to establish the best method for fresh blueberry beverage production using enzyme treatment as well as low temperature extraction. During extraction of physiologically functional materials, we used low temperature to prevent nutritional loss by heat. In addition, we investigated optimal blueberry extraction conditions using various enzyme treatments (cellulase, pectinase, cellulase:pectinase (1:1) mixture) to increase extraction efficiency and reduce turbidity. A variety and ratio of enzymes, extraction temperature, extraction time, and shaking speed were considered for the best extraction efficiency rate. We observed high extraction efficiency rates of 85.72-86.55% and 87.06-87.93%, respectively, upon cellulase or pectinase treatment. In addition, a mixture of cellulase:pectinase (1:1) showed an extraction efficiency rate of 86.84-88.14%. The best extraction efficiency rate was observed when crude blueberry was treated at $45^{\circ}C$ (87.91%), for 3 h (87.88%), in a 90 rpm shaker (89.19%). Sugar content and acidity of blueberry extract were not affected by the various treatments. However, total phenolic compounds were detected upon pectinase treatment (18.62 mg/g). Only fructose and glucose as free sugars were found in all samples regardless of treatments and extraction conditions.

Preparation and Adsorption-photocatalytic Activity Evaluation of TiO2-Coconut Shell Powder Composite (TCSPC) (TiO2-Coconut Shell Powder Carbon 복합체 (TCSPC) 제조 및 흡착 광촉매 산화 활성 평가)

  • Lee, Min Hee;Kim, Jong Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.357-362
    • /
    • 2015
  • A novel $TiO_2$-Coconut Shell Powder Composite (TCSPS), prepared by the controlled sol-gel method with subsequent heat treatment, was evaluated as an innovative photocatalytic absorbent for the removal of methylene blue. Optimal preparation conditions of TCSPC were obtained by a response surface methodology and a central composite design model. As compared with the results obtained from one-factor-at-a-time experiments, the values were approximated to the nearest condition of these values and the following experimental parameters were set as the optimum : $600^{\circ}C$ calcination temperature and 20 g of coconut shell powder loading amount.

Optimization of Pretreatment of Persimmon Peel for Ethanol Production by Yeast Fermentation (효모를 이용한 에탄올 생산을 위한 감껍질 전처리조건의 최적화)

  • Lee, Jong-Sub;Park, Eun-Hee;Kwun, Se-Young;Yeo, Soo-Hwan;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.202-206
    • /
    • 2014
  • A response surface method based on a central composite design experiment was used to determine the optimum conditions for pretreatment of persimmon peel. It was mathematically predicted that the maximum amount of reducing sugars would be obtained at an $H_2SO_4$ concentration of 1.77% (w/v) and a heat treatment time of 26.4 min. A reducing sugar concentration of 63.23 g/l was obtained under the optimum pretreatment conditions determined by RSM. Under anaerobic growth conditions, Saccharomyces cerevisiae NK28 produced 15.52 g/l of ethanol with a yield of 0.34 g ethanol/g glucose from pretreated persimmon peel, which corresponded to 14% and 26% enhancements in ethanol productivity and ethanol yield, respectively, compared with those obtained in aerobic growth conditions. This study suggests that persimmon peel might be a useful substrate for bioethanol production by yeast fermentation.

The Effect of Heat Treatment Condition on the Mechanical Properties of oxi-PAN Based Carbon Fiber (Oxi-PAN 섬유를 기반으로 제조한 탄소섬유의 탄화 조건에 따른 구조 및 물성의 변화)

  • Choi, Kyeong Hun;Heo, So Jeong;Hwang, Sang-Ha;Bae, Soo Bin;Lee, Hyung Ik;Chae, Han Gi
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.385-391
    • /
    • 2018
  • In this study, carbon fibers were fabricated via carbonization of oxidized polyacrylonitrile (oxi-PAN) under different carbonization conditions. Carbonization of oxi-PAN fiber was performed under four different temperature (1300, 1400, 1500, $1600^{\circ}C$) with four different fiber tensions (14, 25, 35, 45 MPa). Effect of carbonization process on the structural development and mechanical properties of carbon fiber were characterized by single filament fiber tensile test and Raman spectroscopy. A clear correlation exists between the Raman spectrum and the tensile modulus of carbon fiber and effect of carbonization temperature on the tensile modulus showed increased tendency only at higher fiber tension (${\geq}25MPa$) while tensile strength showed decreased or random tendency. Therefore, it may be concluded that the optimization of carbonization temperature of oxi-PAN fiber also requires optimization of fiber tension.

Investigation of Antioxidative Activity and Stability of Ethanol Extracts of Licorice Root (Glycyrrhiza glabra) (감초의 에탄올 추출물의 항산화 활성 및 안정성 조사)

  • Kim, Su-Jeong;Kweon, Dae-Hyuk;Lee, Jong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.584-588
    • /
    • 2006
  • This study was carried out to optimize the conditions for the extraction of antioxidative materials from licorice root, Glycyrrhiz glabra. Chipped licorice roots were extracted with several solvents and their antioxidative activities were tested to determine the optimal extraction solvent. Among the solvents tested, 95% ethanol gave the highest free radical scavenging activity, and was therefore chosen as the optimal extracting solvent. The optimum extraction temperature and time were $20^{\circ}C$ and 12 hr, respectively. Next, the free radical scavenging activity of the ethanol extract was compared with that of other known antioxidants such as ${\alpha}-tocopherol$, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). Ethanol extract of licorice root had greater antioxidative activity than ${\alpha}-tocopherol$ and a similar level to that of the two synthetic antioxidants (BHA and BHT). Moreover, the antioxidative activity of the ethanol extract was inhibited neither by heat treatment at $180^{\circ}C$ for 30 min nor by treatment at extreme pH. These findings suggest that ethanol extract of G. glabra may be useful as a natural antioxidant.