• Title/Summary/Keyword: heat transport

Search Result 757, Processing Time 0.027 seconds

An Application of K-$\varepsilon$ Turbulence Model for Predicting Effect of a Rectanguler Obstacle with Heat Flux in a Solt-Ventilated Enclosure on Air Flow

  • 최홍림;김현태;김우중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.30-44
    • /
    • 1992
  • A modification of the TEACH-like computer program based on the k-$\varepsilon$ turbulence transport was applied for predicting air mixing patterns and temperature distributions in a rectangular, slot-ventilated enclosure having obstructions ; a rectangular obstacle with heat flux, solid walls separates the passage and the pig pens, and purlins beneath the ceiling. Air flow patterns were calculated for the cases with and without the purlin, extending 300mm beneath the ceiling. Comparisons of prediction data of Randall & Battams(1976) showed air flow pattern predicted well for the case without the purlin. Heat was accumulated at the corner of the left side of the solid wall and the right-upper region of the simulated pigs. However the air distribution pattern was completely different from data for the case with the purlin. The deviation from the observation may be attributed to the difference of the geometric configuation. Exploring the cause of the deviation should be conducted in a further study. Temperature stratification was also observed due to incomplete mixing. The obstruction in the route of the inlet air jet at inlet should be avoided since most of kinetic energy dissipates at the abstacle duet to impingement.

  • PDF

Coupled Analysis of Hydrogen Transport Within ABAQUS (ABAQUS 를 이용한 수소확산 해석)

  • Oh, Chang-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.600-606
    • /
    • 2009
  • In this paper, the coupled model with hydrogen transport and elasto-plasticity behavior is introduced. This model is implemented to the general-purpose FE code, ABAQUS, via the user-defined subroutine UMAT and UMATHT. In UMAT, the spatial gradients of hydrostatic stress and hydrogen induced deformation are calculated, and then are passed into UMATHT. Heat transfer equation within UMATHT is substituted by hydrogen transport equation including the effects of stress states and strain hardening. To validate this model, the finite element analyses coupled with hydrogen transport and mechanical loading are performed for the boundary layer specimens with low and high strength steel properties. The FE results are compared with the previous studies by Taha and Sofronis (2001).

Studies on the Optimum Method of Cold Transport of Marine Products I. Transport of Iced Mackerel (수산물 저온수송의 최적방법에 관한 연구 I. 고등어의 빙장수송)

  • Hur Jong-wha;Ham Nack-kie;Lee Jong-Gap;Choi Sun-Hong;Kim Jin-kook
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.9 no.2
    • /
    • pp.111-117
    • /
    • 1980
  • The optimum methods of transport of fresh mackerel caught at korean coast and neighboring sea were investigated. The quality of mackerel after 3 day-stored with ice showed that the freshness were still kept. The temperature fluctuation of mackerel during transport with ice from Busan to Seoul indicated below $5^{\circ}C$, recommended by I.I.R. Heat loss of iced mackerel in transit was calculated and converted into ice weight in case of cargo truck and insulated truck. It was assumed that the semi-dressed mackerels were more effective and economic than the round ones during transport.

  • PDF

Evaluation on Thermal Energy Performance of a Plate Heat Exchanger (판형열교환기의 열에너지 성능평가)

  • Kang, Byung-Ha;Kim, Do-Kyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2003
  • Performance evaluation on thermal transport of a plate heat exchanger has been carried out. The $\varepsilon$-Ntu method is employed to evaluate the performance of a brazed type of plate heat exchanger. This problem is of particular interest in the design of a plate heat exchanger. The characteristics of heat transfer as well as pressure drop are studied in the wide range of Reynolds numbers in the cold side while that of hot side is fixed at 620. f-factor correlation in a plate heat exchanger is obtained from the pressure drop data. It is also found that the effectiveness of the plate heat exchanger is increased as the Ntu is increased.

An Experimental Study on the Heat Transfer Characteristics in Miniature Heat Pipes with Screen Wick (스크린 윅을 삽입한 소형 히트파이프에서 열전달 특성에 관한 실험적 연구)

  • Park, K.H.;Lee, K.W.;Ko, Y.K.;Lee, K.J.;Chun, W.P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.572-578
    • /
    • 2001
  • This study is to research the heat transfer characteristics in copper-water heat pipes with screen wick, #100. Recently, the semiconductor capacity of an electronic unit has been larger, on the contrary, its size is smaller than before. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle ${-6}^{\circ}$, #100 2layer screen mesh is shown the best heat transfer performance.

  • PDF

An Experimental Study on Heat Transfer Performances in 8mm-diameter Heat Pipes with Screen Mesh Wick (스크린 메쉬 윅을 삽입한 8mm 히트파이프에서 열전달 성능에 관한 실험적 연구)

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Lee, Kye-Jung;Yoo, Seong-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.48-53
    • /
    • 2001
  • This experimental study is to research heat transfer characteristics in copper-water heat pipes with screen wick, the 150 and 200-mesh. Recent advances in the miniaturization and large capacity of electronic devices have had a major impact on the design of electronic equipment. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle, number of layer and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle $6^{\circ}$, the 200-mesh screen wick 3-layer is shown the best heat transfer performance.

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

A Study on Transport and Heat Utilization of Ice Slurries (아이스 슬러리의 수송 및 냉열이용에 관한 연구)

  • 길복임;이윤표;정동주;조봉현;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF

Oxygen Transport in Axisymmetric Thrombosed Aneurysm (혈전이 있는 축대칭 동맥류에서의 산소전달현상)

  • 김한일;태기식;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.295-300
    • /
    • 2002
  • Localized hypoxia, due to the diminished $O_2$supply, is reported to cause necrosis of the arterial cell and to significantly decrease resistances to physiologic distending pressures. In the present study, in order to understand the mechanism of localized hypoxia which might result in the rupture of the aneurysm. $O_2$ transport phenomena across intraluminal thrombus in axisymmetric aneurysms under steady laminar flow condition were numerically analyzed using the Fick's law and the analogy with the fluid-solid heat transfer. For computational models, varying the thickness of intraluminal thrombus, numerical results showed that for the axisymmetric aneurysm with intraluminal thrombus. $O_2$ concentration became minimal at the aneurysm wall. With increased thickness of the intraluminal thrombus in the aneurysm. regions of low $O_2$ concentration were widely distributed near the aneurysm wall, which resulted in the possibility of localized hypoxia. The present study verifis that intraluminal thrombus influences $O_2$ transport to the aneurysm wall. depending on its size and structure.

Effects of Working Fluid Filling Ration and Heat Flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon

  • Chang, Ki-Chang;Lee, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying the loop thermosyphon to heat exchanger de-sign. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in the range of 13000~78000 W/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\pm$5% and $\pm$20% respectively.