Browse > Article
http://dx.doi.org/10.3795/KSME-A.2009.33.6.600

Coupled Analysis of Hydrogen Transport Within ABAQUS  

Oh, Chang-Sik (고려대학교 대학원 기계공학과)
Kim, Yun-Jae (고려대학교 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.33, no.6, 2009 , pp. 600-606 More about this Journal
Abstract
In this paper, the coupled model with hydrogen transport and elasto-plasticity behavior is introduced. This model is implemented to the general-purpose FE code, ABAQUS, via the user-defined subroutine UMAT and UMATHT. In UMAT, the spatial gradients of hydrostatic stress and hydrogen induced deformation are calculated, and then are passed into UMATHT. Heat transfer equation within UMATHT is substituted by hydrogen transport equation including the effects of stress states and strain hardening. To validate this model, the finite element analyses coupled with hydrogen transport and mechanical loading are performed for the boundary layer specimens with low and high strength steel properties. The FE results are compared with the previous studies by Taha and Sofronis (2001).
Keywords
Hydrogen Transport; FE Analysis; ABAQUS;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Taha, A. and Sofronis, P., 2001, 'A Micromechanics Approach to the Study of Hydrogen Transport and Embrittlement,' Engineering Fracture Mechanics, Vol. 68, pp. 803-837   DOI   ScienceOn
2 Birnbaum, H. K. and Sofronis, P., 1994, 'Hydrogen-Enhanced Localized Plasticity-A Mechanism for Hydrogen Related Fracture,' Materials Science and Engineering A, Vol. 176, pp. 191-202   DOI   ScienceOn
3 Sofronis, P. and McMeeking, R. M., 1989, 'Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip,' Journal of the Mechanics and Physics of Solids, Vol. 37, No. 3, pp. 317-350   DOI   ScienceOn
4 Lufrano, J. and Sofronis, P., 1998, 'Enhanced Hydrogen Concentrations Ahead of Rounded Notches and Cracks-Competition Between Plastic Strain and Hydrostatic Stress,' Acta Materialia, Vol. 46, No. 5, pp. 1519-1526   DOI   ScienceOn
5 A. H. M. Krom, H. J. Maier, R. W. J. Koers, and A. Bakker, 1999, 'The Effect of Strain Rate on Hydrogen Distribution in Round Tensile Specimens,' Material Science and Engineering A, Vol. 271, pp. 22-30   DOI   ScienceOn
6 ABAQUS Version 6.7, 2007, 'User's Manual,' Hibbitt, Karlsson and Sorensen, Inc, RI
7 R. A. Oriani, 1970 'The Diffusion and Trapping of Hydrogen in Steel,' Acta Metallurgica et Materialia, Vol. 18, pp. 147-157   DOI   ScienceOn
8 Krom, A. H. M., Koers, R. W. J. and Bakker, A., 1999, 'Hydrogen Transport near a Blunting Crack Tip,' Journal of the Mechanics and Physics of Solids, Vol. 47, pp. 971-992   DOI   ScienceOn
9 Y. Kim, Y. J. Chao, M. J. Morgan, and P. S. Lam, 'Comparison of Decoupled and Coupled Analyses for Hydrogen Transport in Fracture Specimens,' 2007 ASME conference on Pressure Vessels and Piping, July 22-26, 2007, San Antonio, Texas