• Title/Summary/Keyword: heat release capacity

Search Result 39, Processing Time 0.028 seconds

A Study on Degradation and Recovery of Damping Capacity in Cu-65%Mn Alloy (Cu-65%Mn 합금의 진동감쇠능 퇴화 및 회복)

  • Chung, Tae-Shin;Jun, Joong-Hwan;Lee, Seung-Hoon;Lee, Young-Kook;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.92-98
    • /
    • 1998
  • Degradation and recovery of damping capacity in a Cu-65%Mn alloy have been studied. When the alloy was isothermally aged at $400^{\circ}C$, the highest damping capacity was observed after aging for 4 hours. In case when the alloy aged at $400^{\circ}C$ for 4 hours was maintained at $100^{\circ}C$, the damping capacity gradually decreased with time. The microstructural observations showed that the formation of subdomains and ${\alpha}$-Mn precipitates are responsible for the degradation of damping capacity. When the degraded specimen was reheated at $250^{\circ}C$ for 30 minutes, the damping capacity was recovered considerably owing to the redistribution of impurity atoms, the extinction of subdomains and the release of damping sources from ${\alpha}$-Mn precipitates during the repeated transformation, fcc${\leftrightarrow}$fct.

  • PDF

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Choi, Eunho;Kwak, Young Jun;Song, Myoung Youp
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1403-1411
    • /
    • 2018
  • Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN=2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN=3 at 593 K in 12 bar $H_2$. At CN=1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

Preparation and Properties of Aromatic Polybenzoxazoles with high char yields (높은 char 수득률를 갖는 방향족 polybenzoxazoles의 제조 및 특성)

  • Sohn, Jun-Youn;Moon, Sung-Chul;Yoon, Doo-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.238-248
    • /
    • 2007
  • A series of polyhydroxyamides(PHAs) having ether linkages in the polymer backbone were prepared via solution polycondensation at low temperature. These polymers were studied by FT-IR, $^1H-NMR$, DSC, TGA and PCFC. The PHAs exhibited inherent viscosities in the range of $0.5{\sim}1.1dL/g\;at\;35^{\circ}C$ in DMAc solution. Most of PHAs except PHA 3 were soluble in polar organic solvents such as N,N-dimethylacetamide(DMAc), N-methyl-2-pyrrolidone(NMP), and N,N-dimethylform-amide(DMF). Subsequent thermal treatment of PHAs afforded polybenzoxazols(PBOs). However, the PBOs were insoluble in a variety of solvents. Most of the PBOs except PBO 3 showed glass-transition temperature($T_g$) in the range of $200{\sim}246^{\circ}C$ by DSC and maximum weight loss temperature in the range of $597{\sim}697^{\circ}C$ in nitrogen by TGA. PBOs showed high char yields in the range of $51{\sim}64%$. PCFC results of the PBOs showed the heat release(HR) capacity, $8{\sim}65J/gK$ and total heat release(total HR), $2.4{\sim}4.7kJ/g$.

Experimental Study on Flame Trajectory in Building External Walls Fire (건축물 외벽화재시 Flame Trajectory 추정을 위한 실험적 연구)

  • Shin, Yi-Chul;Park, Kye-won;Jeong, Jae-Gun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.79-80
    • /
    • 2016
  • In the event of a fire on the outer walls of an architectural structure, through real scale experiments with the purpose of estimating the Flame Trajectory, the behavior and risks of expanded combustion to an upper architectural compartment of the Fire Plume Ejected from an Opening according to changes in the aspect ratio of the opening were examined. The results showed that the more the heat release rate of the fire source increased, the heat capacity of the Fire Plume Ejected from the Opening also increased, and for the case of heptane when compared with methanol or ethanol, the results showed a trend for a significant amount of unburned gas to remain. The results also showed that the larger the aspect ratio was, the more likely it was for the Flame Trajectory to approach the outer walls and rise up. In each of the experiment conditions, as the flame rose from the lower part of the wall to the upper part of the wall, a steady decrease was shown for the temperature distribution. Also by quantitatively analyzing the amount of unburned gas that remained, a method to estimate the temperature of the Fire Plume Ejected from an Opening for a traverse opening was implemented.

  • PDF

Effect analysis of ISLOCA pathways on fission product release at Westinghouse 2-loop PWR using MELCOR

  • Kim, Seungwoo;Park, Yerim;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2878-2887
    • /
    • 2021
  • As the amount of fission product released from ISLOCA was overestimated because of conservative assumptions in the past, several studies have been recently conducted to evaluate the actual release amount. Among several pathways for the ISLOCA, most studies were focused on the pathway with the highest possibility. However, different ISLOCA pathways may have different fission product release characteristics. In this study, fission product behavior was analyzed for various pathways at the Westinghouse two-loop plant using MELCOR. Four pathways are considered: the pipes from a cold leg, from a downcomer, from a hot leg to the outlet of RHR heat exchanger, and the pipe from the hot leg to the inlet of RHR pump (Pathway 1-4). According to the analysis results, cladding fails at around 2.5 h in Pathways 1 and 2, and on the other hand, about 3.3 h in Pathways 3 and 4 because the ISLOCA pathways affect the safety injection flow path. While the release amount of cesium and iodine ranges between 20 and 26% in Pathways 1 to 3, Pathway 4 allows only 5% to the environment because the break location is submerged. Also, as more than 90% of cesium released to the environment passes through the personnel door, reinforcing the pressure capacity of the doors would be a significant factor in the accident management of the ISLOCA.

A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer (압축 벤토나이트 완충재의 비열 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • A geological repository for the disposal of high-level radioactive waste is generally constructed in host rock at depths of 500~1,000 meters below the ground surface. A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste, and it can restrain the release of radionuclides and protect the canister from the inflow of groundwater. Since high temperature in a disposal canister is released to the surrounding buffer material, the thermal properties of the buffer material are very important in determining the entire disposal safety. Even though there have been many studies on thermal conductivity, there have been only few studies that have investigates the specific heat capacity of the bentonite buffer. Therefore, this paper presents a specific heat capacity prediction model for compacted Gyeongju bentonite buffer material, which is a Ca-bentonite produced in Korea. Specific heat capacity of the compacted bentonite buffer was measured using a dual probe method according to various degrees of saturation and dry density. A regression model to predict the specific heat capacity of the compacted bentonite buffer was suggested and fitted using 33 sets of data obtained by the dual probe method.

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF

Performance Analysis of Heat Pump System with Air Source Evaporator and Single Unit Dual Sink Condenser (공기열원 2중히트싱크 열펌프의 성능해석)

  • Woo, J.S.;Lee, S.K.;Lee, J.H.;Park, H.S.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.11-22
    • /
    • 1998
  • Floor panel heating system using hot water is the primary heating system of domestic residential building. This paper presents the results of performance analysis of the heat pump system with air source evaporator and single unit dual sink(SUDSk) condenser. The heat exchanger combines two separated condensers into a single condenser and the object of the SUDSk condenser is to release energy to dual sinks, i.e. air for air heating system and water for panel heating system in one single unit. Simulation program is developed for single unit dual source(SUDS) SUDSk heat pump system and some experimental data are obtained and compared with simulation results. Differences of heating capacity and COP in dual source operating mode are 7% and 8% respectively. Simulation results are in good agreement with test results. Therefore, developed program is effectively used for design and performance prediction of dual source dual sink heat pump system with SUDS evaporator and SUDSk condenser.

  • PDF

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery

  • Park, Tae-Jun;Lim, Jung-Bin;Son, Jong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.357-364
    • /
    • 2014
  • Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.

The Solution of Severe Vibration Problen of the Secondary Cooling Pump in HANARO (하나로 2차 냉각펌프의 고진동 해소방안)

  • Park, Yong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.26-31
    • /
    • 2002
  • The heat produced by the fission in the fuel of HANARO, 30 MW of research reactor, was transferred from the primary cooling water to the secondary cooling water through heat exchangers. The secondary cooling water absorbing the heat was circulated by secondary cooling pumps and cooled through 33 MW of cooling tower. Each capacity of the three secondary cooling pumps was fifty percent ($50\%$) of full load. The two pumps were normally operated and the other pump was standby. One of the secondary cooling pumps has often made troubles by high vibration. To release these troubles the pump shaft has been re-aligned, the pump bearing has been replaced with new one, the shaft sleeve has been replaced with new one, the shaft and the impeller have been re-balanced representatively and/or the vibration of motor has been tested by disconnecting the shaft of pump. But the high vibration of pump cannot be cleared. We find out the weight balance trouble of the assembly in which the impeller is installed in the shaft. After clearing the trouble, the high vibration is relieved and the pump is operated smoothly. In this paper, the trouble solution shooting method of secondary cooling pump is described including the reason of high vibration