• Title/Summary/Keyword: heat pipe

Search Result 1,180, Processing Time 0.024 seconds

A Safety Improvement for the Design Change of Westinghouse 2 Loop Auxiliary Feedwater System (웨스팅하우스형 원전의 보조급수계통 설계변경 영향 평가)

  • Na, Jang Hwan;Bae, Yeon Kyoung;Lee, Eun Chan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The auxiliary feedwater is an important to remove the heat from the reactor core when the main feedwater system is unavailable. In most initiating events in Probabilistic Safety Assessment(PSA), the operaton of this system is required to mitigate the accidents. For one of domestic nuclear power plants, a design change of a turbine-driven auxiliary feedwater pump(TD-AFWP), pipe, and valves in the auxiliary system is implemented due to the aging related deterioration by long time operation. This change includes the replacement of the TD-AFWP, the relocation of some valves for improving the system availability, a new cross-tie line, and the installation of manual valves for maintenance. The design modification affects the PSA because the system is critical to mitigate the accidents. In this paper, the safety effect of the change of the auxiliary feedwater system is assessed with regard to the PSA view point. The results demonstrate that this change can supply the auxiliary feedwater from the TD-AFWP in the accident with the motor-driven auxiliary feedwater pump(MD-AFWP) unavailable due to test or maintenance. In addition, the change of MOV's normal position from "close" to "open" can deliver the water to steam generator in the loss of offsite power(LOOP) event. Therefore, it is confirmed that the design change of the auxiliary feedwater system reduces the total core damage frequency(CDF).

An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber (정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.

A Comparison with CFD Simulation and Experiment for Steam-methane Reforming Reaction in Double pipe Continuous Reactor (이중관형 연속 반응기에서 수증기-메탄 개질반응의 실험 및 CFD 시뮬레이션)

  • Shin, Dong-Woo;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.226-236
    • /
    • 2013
  • The heat distribution and internal flow from the efficiency of actual reformer and specification variation, using the computer simulation and experiment about the steam methane reforming reaction which uses the high temperature reformer. Reaction model from steam refoemer uses the steam response model developed by Xu & Froment.As result we supposed the chemical react Steam Reforming(SR), Water Gas Shift(WGS), and Direct Steam Reforming(DSR) from the inner high temperature reformer dominates the response has dissimilar response. According to result of steam methane reforming reaction exam using high temperature reformer, we figured out when Steam Carbon Ratio(SCR) increase, number of hydrogen yield increases but methane decreases. When comparing and examining between design with one inlet and two inlet, result came out one inlet design is more outstanding at thermal distribution and internal flow, hydrogen yield in one inlet design than two inlet design.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.

A Study on the Development of Superheater Using High-Frequency Resonant Inverter for Induction Heating (유도가열용 고주파 공진형 인버터를 이용한 과열증기 발생장치 개발에 관한 연구)

  • 신대철;권혁민;김기환;김용주
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2004
  • This paper is described the indirect induction heated boiler system and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20〔KHz〕 to 50〔KHz〕. A specially designed Induction heater, which is composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates, is inserted into the ceramic type vessel with external working coil. This working coil is connected to the resonant inverter. In the induction heater, it's primary heating section creates low-pressure saturated steam and secondary heating section generates heat distribution evaporating fluid from the turbulence fluid which is flowing through the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from the practical point of view.

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

Analysis of Geothermal Melting System Conductivity for Improving Road Safety (도로주행 안정성 향상을 위한 지열 융설시스템 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Lee, Seung-Ha;Seo, Un-Jong;Kim, Jin-Han;Lee, Joo-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Sliding accidents on the road have a high percentage by road freezing, especially, they often have appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out; pavement materials of concrete and asphalt where the system is buried. The heat transfer simulation is essential when the geothermal snow melting system is applied according to heating exchanger pipe placed in the lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. Many variables are discovered from numerical analyses under the same conditions with model test.

  • PDF

A Study on Extracting Bottom Water Taking in Concern of Temperature Level Boundaries (수온층을 고려한 저층수 취수 기술에 관한 연구)

  • Sim, Kyung-Jong;Park, Hee-Moon;Lim, Hyun-Mook;Cho, Su;Lee, Su-Yul;Park, Tae-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1285-1290
    • /
    • 2008
  • The interest in use of new field of energy and unused existing potential energy has been raised in number of advanced countries including South Korea. As a respond of the interest and the following reactions, a new technology which helps to reduce bad environmental factors and decrease national energy consumption rate in the way of extract cold-heat energy in dam water. This research focuses on a method that enables taking the water flows in desirable temperature range whilst keeping water temperature boundaries of bottom level water. The analysis was made in simulating on CFD. In order to keep the temperature boundary level, a deep well pump was set in piping in the simulation. As the significant result, the most alteration in temperature was found when the smallest size of pipe was plumbed. However, when the flow has small value of velocity, no matter how big the piping size was, the temperature variation was negligible. Therefore, possible hypothesis was made as bigger piping as fast flow will have better function in the way to keep the temperature boundary level.

  • PDF

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.