• Title/Summary/Keyword: heat of hydration heat

Search Result 712, Processing Time 0.026 seconds

Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs) (상전이물질을 혼입한 시멘트 모르타르의 수화발열 및 강도 특성 평가)

  • Jang, Seok-Joon;Kim, Byung-Seon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.665-672
    • /
    • 2016
  • This study is conducted to investigate the effect of phase change materials (PCM) on hydration heat and strength characteristics of cement mortar. Two types of Barium and Strontium-based PCMs were used in this study and the addition ratio of each PCM to the cement mortar ranged from 1% to 5% by cement weight. Flow test, semi-adiabatic temperature rise test, compressive strength and flexural strength test were carried out to examine the PCM effect on heat and mechanical properties of cement mortar. Test results indicated that PCMs used in this study were effective to control hydration heat of cement mortar, and Barium-based PCM slightly reduce flow value. The compressive and flexural strength of cement mortar with PCM decreased with increasing the adding mount of PCM. The prediction model for compressive strength of cement mortar with different addition levels of PCMs are suggested in this study.

Effect of the factor developing the Heat of Hydration on Durability Design in the Subway Concrete Structure (수화열 발생인자가 지하철 콘크리트 구조물의 내구설계에 미치는 영향)

  • Lim Young-Su;Kim Eun Kyum;Sung Ki Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1131-1137
    • /
    • 2004
  • With the recent continuous expansion of subways, newly created subways tend to have lower locations and wider sections. Furthermore. since box structures and evacuating tunnels are classified into a category of mass-concrete. the thermal-stress, emitted from the inside. causes cracks to structures from the inception of constructing. In this paper, thermal-stress analysis and durability evaluation of box structure were carried out to investigate relationship between durability and parameter causing the heat of hydration. Through the examination, this paper tries to find out satisfactory solutions to regulated thermal crack and ensure the required duration period. The results of this paper showed that to control thermal crack and guarantee the required duration period it was more effective to use low-heat-portland cement and moderateheat-portland cement. As cement volume due to reduction of water-cement ratio increased, the possibility of thermal cracks occurrence increased but results of durability evaluation was different depending on evaluation method. The results showed that the appropriate water-cement ratio to control the heat of hydration and satisfy the required durability was $45\∼55\%$. And it was showed that during placement of concrete blocks ambient temperature affect the heat of hydration. thermal crack and long-term durability largely and when concrete was placed at low temperature to control thermal crack. it need to try to guarantee the required duration period. Henceforth, by studying not only internal and external conditions, such as the relative humidity and the unit weight. but also methods, to evaluate durability, in accordance with domestic situations, more reasonable design of durability should be achieved.

  • PDF

Investigation of Optimal Construction Procedures for Concrete Underpass Structures Considering Heat of Hydration (수화열을 고려한 콘크리트 지하차도 적정 시공법 분석)

  • An, Zu-Og;Kim, Seong-Min;Kim, Dong-Ryun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.229-238
    • /
    • 2009
  • This paper describes the methods to propose the optimal material properties and construction steps that prevent cracks due to the thermal stresses induced by the hydration heat under the construction of the concrete underpass structures. To achieve the goal of this study, the heat transfer theories were employed and the three-dimensional finite element model of the underpass structure was developed and used for the structural analyses. If the volume of the concrete member that is placed at one time is significantly large, the member is assumed to be the mass concrete and is easy to induce cracks. In order to minimize the cracks during the construction, two different methods can be utilized: one is to arrange the construction steps optimally and the other is to change the materials to reduce the probability of the crack occurrence. In this study, the analyses were performed by considering the changes in material properties with time, the characteristics of the hydration heat generation for cements and admixtures, the volume of the concrete placement at one time, and the environmental conditions.

  • PDF

A novel Fabry-Perot fiber optic temperature sensor for early age hydration heat study in Portland cement concrete

  • Zou, Xiaotian;Chao, Alice;Wu, Nan;Tian, Ye;Yu, Tzu-Yang;Wang, Xingwei
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Concrete is known as a heterogeneous product which is composed of complex chemical composition and reaction. The development of concrete thermal effect during early age is critical on its future structural health and long term durability. When cement is mixed with water, the exothermic chemical reaction generates hydration heat, which raises the temperature within the concrete. Consequently, cracking may occur if the concrete temperature rises too high or if there is a large temperature difference between the interior and the exterior of concrete structures during early age hydration. This paper describes the contribution of novel Fabry-Perot (FP) fiber optic temperature sensors to investigate the thermal effects of concrete hydration process. Concrete specimens were manufactured under various water-to-cement (w/c) ratios from 0.40 to 0.60. During the first 24 hours of concreting, two FP fiber optic temperature sensors were inserted into concrete specimens with the protection of copper tubing to monitor the surface and core temperature change. The experimental results revealed effects of w/c ratios on surface and core temperature developments during early age hydration, as well as demonstrating that FP fiber optic sensors are capable of capturing temperature variation in the concrete with reliable performance. Temperature profiles are used for calculating the apparent activation energy ($E_a$) and the heat of hydration (H(t)) of concrete, which can help us to better understand cement hydration.

Fundamental Evaluation and Hydration Heat Analysis of Low Heat Concrete with Premixed Cement (저발열형 Premixed Cement를 사용한 콘크리트의 기초물성 평가 및 수화열 해석에 관한 연구)

  • Yoon, Ji-Hyun;Jeon, Joong-Kyu;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump, compressive strength and dry shrinkage according to concrete with premixed cement, ternary concrete and OPC concrete for using concrete with premixed cement. The results of experiment are founded that concrete with premixed cement have sufficient performances such as workability, compressive strength and dry shrinkage. Also, the results of hydration heat analysis are founded that concrete with premixed cement have more performance than ternary concrete and OPC concrete at a point of view for the quality control such as thermal crack reducing and economic benefit. Therefore, it is desirable that concrete with premixed cement should be used to rise durability performance and convenience of maintenance.

An Experimental Study on Hydration Heat Characteristics for Thermal Crack Analysis Based on FEM of Urea Mixed Mass Concrete (Urea 혼입 매스콘크리트의 FEM 온도균열 해석을 위한 수화발열특성에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.36-37
    • /
    • 2019
  • In domestic construction industry progress, construction and quality control of large structures are considered to be important as the superstructure and mass scale of structures. In the case of mass concrete, high hydration heat caused by cement hydration generates temperature stress by generating internal temperature difference with the concrete surface. These temperature stresses cause cracks to penetrate the concrete structure. A method of lowering the heat generation by incorporating Urea in order to reduce the concrete temperature crack has been proposed. In this study, the heat function coefficient for the FEM temperature crack analysis of the mass concrete containing the element was derived and the adiabatic temperature rise test was carried out according to the incorporation of the element. As a result of this experiment, the maximum temperature of 41 ± 1℃ was obtained irrespective of the amount of urea, and the maximum temperature decreased by 16.9℃ in concrete containing 40kg/㎥ of urea.

  • PDF

Study on Hydration Heat and Contact the Mix-Design of Foundation Mass Concrete Using Hydration Temperature Analysis Program (수화열 해석프로그램을 이용한 기초 매스콘크리트의 사전 배합선정 및 수화열 검토)

  • Seol, Jun-Hwan;Jo, Man-Ki;Bang, Hong-Soon;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.105-106
    • /
    • 2019
  • In this research, considering the practical conditions at field, thermal cracking method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking. As future issues, based on the interpretation result value, we will select the optimal combination that is applied specifically to the actual site, and deeply analyze the correlation between the measured value and the analysis value through the combination and the test of the actual structure.

  • PDF

A Study on the Estimation of Corrosion Protection Performance of Concrete Containing Ground Granulated Blast-Furnace Slag for Massive Coastal Structures (매시브한 해양구조물 적용을 위한 고로슬래그 혼입 콘크리트의 방청성능 평가에 관한 연구)

  • Yoo, Jae-Kang;Kim, Dong-Suk;Park, Sang-Joon;Won, Chul;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.87-91
    • /
    • 2002
  • This paper investigates the corrosion inhibition and the reduction of hydration heat properties of Ground Granulated Blast-Furnace Slag (GGBFS) added concrete. Since the massive civil structure is vulnerable to the thermal crack by hydration. adiabatic temperature rising tests were performed for water-binder ratios from 43.2% to 47.3%, while replacing 15% to 50% of cement with GGBFS of equal weight. Then, the corrosion protection performance was evaluated using cylindrical specimens embedded with steel reinforcement according to the combination of 3 W/B ratios and 2 levels of chloride ion quantity. The corrosion area of the embedded steel ban was determined using the high pressure steam curing method specified in KS F 2561. The test results showed that the replacement of GGBFS was effective in reducing the hydration heat. The corrosion area of the embedded steel ban decreased as the replacement of GGBFS increased. However, the corrosion area of the steel bar was proportional to the autoclave cycle and the chloride ion quantity. Among the tested specimens, compressive strength, reduction of hydration heat, and corrosion inhibition performance were excellent when 50% of cement was replaced with GGBFS of equal weight.

  • PDF

A Study on the Quality Properties of Low Heat Concrete according to Kinds of Cement (시멘트 종류에 따른 저발열 콘크리트의 품질특성에 관한 연구)

  • Kim, Sung;Choi, Sung-Woo;Jo, Hyun-Tae;Jun, Joun-Young;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.777-780
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, the concrete structure is becoming larger and higher. In hardening these large concrete, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study is investigated the thermal properties of concrete according to several binder conditions, such as OPC, Belite Rich Cement(BRC), Low-Heat-Mixed Cement(LHC), Fly ash added cement. As a result of this study, the Flowability of concrete was beetter with BRC and LHC than FA(25) and OPC. On the other hand, LHC gets superior effect in the control of heat hydration, it's caused by the volume of OPC.

  • PDF

Field Application of the Difference of Setting Time of Improving Super Retarding Agent of Foundation Mat Mass Concrete (기초매트 매스 콘크리트의 초지연제를 활용한 응결시간차공법의 현장적용)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Kwon, Hae-Won;Bae, Yeoun-Ki;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.57-60
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown concerning rising land prices and efficient use of building are gradually Manhattanized mainly the grand scaled residential buildings, structure of the buildings relates to safety and so the very thick mat concrete is selected as the foundation of architectures. Because mat concretes can not be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred because of the time lag. Thus, this study checked the efficiency to apply "The hydration heat controlling method of mass concrete for horizontal partition pouring construction" to the skyscraper sites under construction at Haiundai in Busan. After applying this method, the result of observation that the cracks by hydration heat in all over the placement surface did never be founded. Also, in case of the economic analysis that the hydration heat reduction method using super retarding agent by difference of setting time is approximately 80% cheaper than the hydration heat reduction method by pipe cooling in the construction expenses.

  • PDF