• Title/Summary/Keyword: heat generation mechanism

Search Result 82, Processing Time 0.021 seconds

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

HEAT-TREATMENT OF LARGE-SCALE GLASS BACKPLANES IN A MUFFLE FURNACE (머플 가열로에서의 대면적 유리기판의 가열공정에 대한 열적 연구)

  • Kim, D.H.;Son, G.;Hur, N.;Kim, B.K.;Kim, H.J.;Park, S.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.16-23
    • /
    • 2012
  • Current display manufacturing processes apply thermal treatment of glass backplanes widely for hydrogen degassing, crystallization of thin-films, tempering, forming, and precompaction. Estimation of the characteristics of transient heating stages and thermal non-uniformities on a single glass substrate or in a stack of glasses are extremely helpful to understand non-homogeneity of mechanical and electronic features of nano/micro structures of end products. Based on simple heat transfer models and using an electric muffle furnace, temperature variations in a glass stack were predicted and measured for glass backplanes of $1.5{\times}1.85m^2$ in size and 0.7 mm in thickness. Except for the period of putting glass backplanes into the furnace, thermal radiation was the major heating mechanism for the treatment and theoretical predictions agreed well to the experimental temperatures on the backplanes. Using the theoretical model, thermal fields for a glass stack of glass-size, $2.2{\times}2.5m^2$, and of the number of sheets, 1 to 12, were calculated for practical design and manufacturing of the muffle furnace for large-scale displays, e.g. up to $8^{th}$ generation.

Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping (유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰)

  • Kim, Jong Sung;Kim, Kyoung Soo;Oh, Young Jin;Chang, Hyun Young;Park, Heung Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.809-815
    • /
    • 2014
  • The induction heating bending process, which has been recently applied to nuclear piping, can generate residual stresses due to thermomechanical mechanism during the process. This residual stress is one of the crack driving forces that have important effects on crack initiation and propagation. However, previous studies have focused only on geometric shape variations such as the change in thickness and ovality. Moreover, very few studies are available on the effects of process variables on residual stresses. This study investigated the effects of process variables on the residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping using parametric finite element analysis. The results indicated that the heat generation rate and feed velocity have significant effects on the residual stresses whereas the moment and bending angle have insignificant effects.

Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats

  • Jung, Kiwon;An, Jun Min;Eom, Dae-Woon;Kang, Ki Sung;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.188-194
    • /
    • 2017
  • Background: Fermented black ginseng (FBG) is processed ginseng by the repeated heat treatment and fermentation of raw ginseng. The protective effect and mechanism of FBG on cisplatin-induced nephrotoxicity was investigated to evaluate its therapeutic potential. Methods: The free radical scavenging activity of FBG was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH). In addition, the protective effect against cisplatin-induced renal damage was tested in rats. FBG was orally administered every day at a dose of 150 mg/kg body weight for 10 d, and a single dose of cisplatin was administered intraperitoneally (7.5 mg/kg body weight) with 0.9% saline on the $4^{th}$ d. Results: The DPPH radical-scavenging activity of FBG ($IC_{50}=384{\mu}g/mL$) was stronger than that of raw ginseng. The improved DPPH radical-scavenging activity was mediated by the generation phenolic compounds. The decreased cell viability by cisplatin was recovered significantly after treatment with FBG in a dose-dependent manner. Then, the protective effect of FBG on cisplatin-induced oxidative renal damage was investigated in rats. The decreased creatinine clearance levels, which are a reliable marker for renal dysfunction in cisplatin-treated rats, were reduced to the normal level after the administration of FBG. Moreover, FBG showed protective effects against cisplatin-induced oxidative renal damage in rats through the inhibition of $NF-{\kappa}B/p65$, COX-2, and caspase-3 activation. Conclusion: These results collectively show that the therapeutic evidence for FBG ameliorates the nephrotoxicity via regulating oxidative stress, inflammation, and apoptosis.

Effect of Kamisamul-tang on Hypertension and Free Radical (가미사물탕(加味四物湯)이 고혈압 병태 모델과 활성산소에 미치는 영향)

  • Song, Nak-Kun;Koo, Young-Sun;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1485-1496
    • /
    • 2006
  • Various kinds of related parameters on hypertension such as anti-oxygen effect, ACE, weight of body, hwart and kidney, blood pressure, heartbeat rates, contents of aldosterone, catecholamine, change rates, of plasma constituents, uric acid, BUN, creatinine were determined to verify the effects on hypertension by Kamisamul-tang (KSMT). And the results are concluded as follows. KSMT did not show any cytotoxicity at the range of concentration (1-250 ${\mu}g/m{\ell}$) on the human fibroblast cell (hFCs). KSMT decreased the production of reactive oxygen species (ROS) and DPPH generation depending on the concentration. KSMT significantly inhibited angiotensin converting enzyme(ACE) activity depending on the concentration compared with control. KSMT maintained body weight of body, heat and kidney nearly normal group in hypertensive rat induced by DOCA-salt. KSMT significantly blood pressure and heart beat rate compared with control in hypertensive rat induced by DOCA-salt. KSMT significantly decreased aldosterone, dopamine, norepineph- rine, epinephrine compared with control in hypertensive rat induced by DOCA-salt. KSMT significantly decreased the level of potassium and cloride compared with control wheareas increased that of calcium significantly in hypertensive rat induced by DOCA-salt. KSMT significantly decreased the level of uric acid and BUN compared with control in hypertensive rat induced by DOCA-salt. It is verified experimentally tat Kamisamultang(KMST) which has been used broadly as a clinical therapeutics in oriental medicine is effective for anti-hypertension mechanism. And it could be applied to develope the reliable prescriptions for anti-hypertension in the future.

Joining Characteristics of Plasma Sprayed BSCCO Superconducting Coatings (플라즈마 용사 BSCCO(Bismuth Strontium Calcium Copper Oxide) 초전도 피막의 접합 특성)

  • Park, Jung-Sik;Cho, Chang-Eun;Ko, Young-Bong;Park, Kwang-Soon;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.181-186
    • /
    • 2013
  • We performed plasma spraying for 2001 (Bi:Cu = 2:1), 0212 (Sr:Ca:Cu = 2:1:2) oxide powders. $Bi_2Sr_2CaCu_2Ox$ (2212) superconductor has been prepared by PMP-AT (partial melting process-annealing treatment). The 2212 phase is synthesized between Sr-Ca-Cu oxide coating layer (0212) and Bi-Cu oxide coating layer (2001) by movement of partial melted Bi on 2001 layer and the diffusion reaction (Cu, Sr, Ca) after PMP-AT. There are two different coating layers on joining process. The one is ABAB coating layers and the other is BAAB coating layers by arrangement of 2001 (A), 0212 (B) layers. We performed heat treatment these two different coating layers processes under same PMP-AT conditions. We obtained Bi-2212 superconducting layers at each experimental condition, and the result of MPMS, the critical temperature was showed about 78 K. But the microstructure images and result of EDS as each experimental variable were showed about the qualitatively different Bi-2212 superconducting phases. We also deduced the generation mechanism of Bi-2212 superconducting layer as a result of these experimental data, microstruc ture images, EDS data and phase diagram.

A study on Shift Efficiency Characteristics of a 2-speed Transmission applying CVT Structure (CVT구조를 적용한 2단 변속기의 효율특성에 관한 연구)

  • Kwang-Wook Youm
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2024
  • In this study, we conducted research on a miniaturized transmission system suitable for ultra-compact electric vehicles, such as electric arts or small electric cars. While conventional electric vehicles eliminate multi-gear transmissions and control motor output or secure initial driving force through reducers, in vehicles like electric karts or compact electric cars, which have relatively small battery capacities, the driving range can be reduced or the motor can be stressed epending on the loading state. Therefore, in this study, we developed a low stage ratio 0.625 and high stage ratio 1.6 a two-stage transmission system that can change gears as needed, considering factors such as slope conditions and loading status, by applying the continuously variable transmission (CVT) mechanism. Based on the selected gear ratios, we designed the transmission and created a test rig to verify the power transmission efficiency of the developed transmission. Using the test rig, we varied the rotational speed and load of the transmission to confirm its power transmission characteristics and also examined the heat generation characteristics during shifting and operation. As a result, developed a two-stage transmission with a CVT structure.

A Study on the Formation Mechanism of Titanium Sponge in the Kroll Process (Kroll법에 의한 타이타늄 스폰지 생성기구에 관한 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.54-60
    • /
    • 2017
  • In this study, we investigated the effect of $TiCl_4$ injection time on the Kroll reaction at a given weight ratio of $TiCl_4$ and Mg. The reduction reaction was investigated by measuring the temperature change according to $TiCl_4$ injection time and observing the cross section and appearance of the Ti sponge after the reaction. The temperature increment due to Kroll reaction heat generation was found to be linearly proportional to the $TiCl_4$ feed rate. In the graph of $TiCl_4$ injection time and reduction tank temperature, initial temperature peaks were observed irrespective of the injection conditions. This is interpreted to mean a temporary interruption of reaction due to $MgCl_2$ formation after the initial Kroll reaction. In addition, when the cross section of the sponge was observed, a large amount of spherical Mg particles was observed in $MgCl_2$. We can infer that this is the process of continuously feeding the unreacted Mg surface, so that a continuous Kroll reaction takes place. The sponge appearance showed that the coalescence or growth of the Kroll reacted Ti particles can be controlled by the cooling rate.

Analysis Method for Damage Patterns of Low Voltage Switches for PL Judgment (PL 판정을 위한 저압용 스위치의 소손 패턴 해석기법)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2010
  • The purpose of this study is to examine the structure and heat generation mechanism of low voltage switches used to turn on or off the power supply to an indoor lighting system and investigate how the fixtures and movable contacts of the switches are damaged depending on the types of energy sources in order to secure the judgment base for expected PL disputes. Based on the Korean Standard (KS) testing method for incombustibility, this study applied a general flame to the switch. In addition, current was supplied to the switch using the PCITS (Primary Current Injection Test System). The ambient temperature and humidity were maintained at $22{\pm}2^{\circ}C$ and 40~60% respectively while performing the test. It is thought that the switch generated heat due to a defective connection of the wire and clip, insulation deterioration and defective contact of the movable contact, etc. The surface of the switch damaged by the general flame was uniformly carbonized. When the flame source was removed, the fire on the switch was extinguished naturally. From the result obtained by disassembling the switch carbonized by the general flame, it could be seen that fixtures and movable contacts remained in comparatively good shape but the enclosure, clip support, movable contact, indicating lamp, etc. showed carbonization and discoloration. In the case of the switch damaged by overcurrent, the clip connecting the wires, clip support, etc. showed almost no trace of damage, but the fixtures, movable contact, indicating lamp, etc. were severely carbonized. That is, the sections with high contact resistance were intensively damaged and showed a damage pattern indicating that carbonization progressed from the inside to the outside. Therefore, it is possible to judge the initial energy source by analyzing the characteristics of the carbonization pattern and the metal fixtures of damaged switches.

Thermal stability of surface modified Ni-Cr-alloys in molten FLiNaK salt (표면처리된 Ni-Cr계 합금의 FLiNaK 용융염 하에서의 고온 안정성)

  • Kwang, Hyun Cho;Bang, Hyun;Lee, Tae Suk;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • Inconel 617 and Hastelloy X are the most promising candidate materials for the heat exchanger of next generation nuclear reactor. Surface coating and its effects on high temperature properties for the Inconel 617 and Hastelloy X under molten FLiNaK (LiF-NaF-KF) salt environment have been investigated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods of an arc discharge and a sputtering were applied, respectively. A study for the thermal stability of the surface modified Ni-Cr alloy substrates has been conducted. To evaluate the corrosion mechanism of Ni-Cr alloys in the molten salt, a ruptured Inconel pipe used for the molten salt transportation has been analyzed. The thermal properties of morphological and structural properties each sample were characterized before and after heat-treatment at $600^{\circ}C$ in molten FLiNaK salt. The results showed that the TiAlN and $Al_2O_3$ overlay coated specimens had the enhanced high temperature stability.