• 제목/요약/키워드: heat generation

검색결과 1,828건 처리시간 0.033초

Second law thermodynamic analysis of nanofluid turbulent flow in heat exchanger

  • K. Manjunath
    • Advances in Energy Research
    • /
    • 제8권3호
    • /
    • pp.125-136
    • /
    • 2022
  • Entropy generation along with exergetic analysis is carried out using turbulent nanofluid flow in the heat exchanger. To obtain the optimized percentage constituent of nanofluid, the nanofluid volume concentrations is varied for the given input conditions. For different Reynolds number of the fluid and heat capacity rate ratio between the streams, the heat transfer improvements are studied in terms of nano particles diameter. Parametric analysis is carried out for a counterflow heat exchanger using turbulent nanofluid flow with exergetic efficiency along with entropy generation number as performance parameters. The exergetic efficiency provides realistic approach in the design of nanofluid applications in heat exchanger leading to conservation of energy.

방열기판 전극형성 기술 동향

  • 김단비;김지원;엄누시아;임재홍
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.83-88
    • /
    • 2018
  • There is close relation between the heat generation and the performance of electronic device. The durability and efficiency of the device are degraded due to heat generation. It is necessary to release the generated heat from an electronic device. Based on demands of the printed circuit board (PCB) manufacturing, the robust and reliable plating technique of PCB is necessary. In this study, we review various methods for improving the heat sink property. These methods were considered to enhance the adhesion between ceramic substrate as heat sink and metal layer as electrode.

초전도자석 시스템 응용을 위한 멀티-컨텍 커넥터의 열 발생 특성 평가 (Estimation of Heat Generation in Multi-Contact Connector for Superconducting Magnet Application)

  • 김명수;최연석;김동락;이윤아
    • Progress in Superconductivity
    • /
    • 제14권2호
    • /
    • pp.122-127
    • /
    • 2012
  • Current leads are one of the important components for carrying the current to the coil in the superconducting magnet system. Heat leakage through the current lead is the major factor of entire heat load in the cryogenic system because current leads carry the current from room temperature to near 4 K, connecting thermally each other. Therefore, minimization heat load through current lead can reduce the operating temperature of superconducting magnet. The semi-retractable current lead, composed of multi-contact connector and HTS element, is one of good options. Comprehension of Multi-contact connector's structure, contact resistance and heat generation is essential for estimating heat generation in current leads. Multi-contact connector has several louvers inside of socket and the shape, number, size of louvers are different with the size of connector. Therefore contact area, current path and contact resistance are also different. In this study, the contact resistance in multi-contact connector is measured using the electrical power as a function of connector's size and temperature. Also, the unique correlation of electrical contact resistance is derived and heat generation is estimated for superconducting magnet application.

풍력 열발생 유압 시스템을 위한 새로운 유량제어밸브에 관한 연구 (A Study on a Novel Flow Control Valve for Wind Power Heat Generation Hydraulic Systems)

  • 최세령;이일영;한봉준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권1호
    • /
    • pp.23-28
    • /
    • 2017
  • A wind power heat generation system that converts wind power directly to heat instead of electric power is considered in this study. The system consists of a wind turbine part and a heat generation part. The heat generation part is materialized by a hydraulic system including a hydraulic pump, a flow control valve, a hydraulic oil tank, etc. The flow control valve primarily converts hydraulic energy generated in the pump to heat energy. It should have a function of overspeed protection under excessive wind speeds. In this study, a novel flow control valve design is proposed for excellent flow control characteristics under excessive pump driving torque (excessive wind speed). The performance of the suggested valve is analyzed using numerical simulation.

냉동시스템의 운전조건에 따른 열교환기 내장형 어큐뮬레이터의 성능 특성 (Performance Characteristics of Accumulator Heat Exchangers with Operating Conditions of a Refrigeration System)

  • 강훈;박차식;전종욱;김용찬
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.984-991
    • /
    • 2006
  • The applications of multi air-conditioners into multiplex and high-rise buildings have been increased by replacing central air-conditioning systems. The pipe length and altitude difference between the indoor and outdoor units can be increased based on installation conditions, which may increase the possibility of flash gas generation at the expansion device inlet. The flash gas generation causes rapid reduction of refrigerant flow rate passing through the expansion device, yielding lower system efficiency. Accumulator heat exchangers have been widely used in multi air-conditioners in order to minimize flash gas generation and obtain system reliability. However, the studies on the heat transfer characteristics and pressure drops of accumulator heat exchangers are very limited in open literature. In this study, the heat transfer rates and pressure drops of accumulator heat exchangers were measured with refrigerant flow rate and operating conditions by using R-22. The heat transfer rate increased with the increase of refrigerant flow rate, while subcooling decreased. The heat transfer rate enhanced with the reduction of inlet superheat and subcooling due to the increased temperature difference between the accumulator and inner heat exchanger.

$MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구 (A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump)

  • 권오경;윤재호;김정욱;이진호
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

가스터빈 복합발전의 기동특성을 고려한 열거래 기반 지역 냉난방 시스템의 최적 운영 모델 (Optimal Operation Model of Heat Trade based District Heating and Cooling System Considering Start-up Characteristic of Combined Cycle Generation)

  • 김종우;이지혜;김학만
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1610-1616
    • /
    • 2013
  • Recently, district heating and cooling (DHC) systems based on combined cycle generation (CCG) providers are increasing in Korea. Since characteristics of combined heat and power (CHP) generators and heat demands of providers, heat trading between DHC providers based on the economic viewpoint is required; the heat trading has been doing. In this paper, a mathematical model for optimal operation based on heat trading between DHC providers is proposed. Especially, start-up characteristic of CCG is included. The operation model is established by mixed integer linear programming (MILP).

Development of a Highly Efficient Boiler System Using a Diesel Engine

  • Lee, D.-H;Lee, D.-Y;Jo, M.-C;Cho, H.-N;Kim, Y.-S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.367-375
    • /
    • 2004
  • We have developed a highly efficient boiler system using the 2,600cc Diesel engine. In this system, the co-generation concept is utilized in that the electric power is produced by the generator connected to the engine, and waste heat is recovered from both the exhaust gases and the engine itself by the shell-and-tube heat exchangers. The heat exchanger connected to the engine outlet is specially designed such that it not only recovers waste heat effectively from the exhaust gases, but significantly reduces an engine noise. It is found that the total efficiency(thermal efficiency plus electric power generation efficiency) of this system reaches maximum 96.3% which is about 15% higher than the typical Diesel engine boiler system currently being used worldwide.

On the performance of heat absorption/generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid

  • Hayat, Tasawar;Khan, Muhammad Ijaz;Waqas, Muhammad;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1645-1653
    • /
    • 2017
  • This investigation explores the thermally stratified stretchable flow of an Oldroyd-B material bounded by a linear stretched surface. Heat transfer characteristics are addressed through thermal stratification and heat generation/absorption. Formulation is arranged for mixed convection. Application of suitable transformations provides ordinary differential systems through partial differential systems. The homotopy concept is adopted for the solution of nonlinear differential systems. The influence of several arising variables on velocity and temperature is addressed. Besides this, the rate of heat transfer is calculated and presented in tabular form. It is noticed that velocity and Nusselt number increase when the thermal buoyancy parameter is enhanced. Moreover, temperature is found to decrease for larger values of Prandtl number and heat absorption parameter. Comparative analysis for limiting study is performed and excellent agreement is found.

THERMAL STRESSES IN A SEMI-INFINITE SOLID CYLINDER SUBJECTED TO INTERNAL HEAT GENERATION

  • DESHMUKH, KISHOR CHINTANAMRAO;QUAZI, YUSUF IQBAL
    • 대한수학회논문집
    • /
    • 제30권4호
    • /
    • pp.505-513
    • /
    • 2015
  • The present paper deals with the determination of displacement and thermal stresses in a semi-infinite circular cylinder defined as $0{\leq}r{\leq}b$, $0{\leq}z<{\infty}$, due to internal heat generation within it. A circular cylinder is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary (r = b) whereas the zero temperature at the lower surface (z = 0) of the semi-infinite circular cylinder. The governing heat conduction equation has been solved by using integral transform method. The results are obtained in series form in terms of Bessel functions. The results for displacement and stresses have been computed numerically and illustrated graphically.