• 제목/요약/키워드: heat control

검색결과 3,675건 처리시간 0.028초

열처리를 통한 금 나노입자의 크기 제어와 일벽 탄소나노튜브의 합성 촉매로의 이용 (Size Control of Gold Nanoparticles by Heat Treatment and Its Use as a Catalyst for Single-Walled Carbon Nanotube Growth)

  • 이승환;정구환
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.737-744
    • /
    • 2013
  • We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.

시스템 히트펌프의 용량조절 및 다변수 제어 특성에 관한 연구 (The Performance of Capacity Modulation and MIMO Control for System Heat Pump)

  • 송인식;주영주;정현준;강훈;김용찬;최종민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.364-369
    • /
    • 2007
  • A system heat pump provides the benefits of comfort, energy conservation and easy maintenance. Recently, the system heat pump has been employed in small and medium-sized buildings. However, the performance data and control algorithm for system heat pump are limited in literature due to complicated system parameters and operating conditions. In the present study, the performance of a system heat pump with two indoor unit is measured by varying indoor loads, EEV opening, and compressor speed. In addition, the integral optimum regulator which includes MIMO control algorithm is proposed. The capacity modulation and optimum capacity for each indoor unit can be adjusted by utilizing the EEVs opening and compressor speed. The proposed scheme shows appropriate control performance at test conditions.

  • PDF

VM 열펌프의 3차해석 (A Third-order analysis of VM heat pumps)

  • 강영구;정은수
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.229-238
    • /
    • 1997
  • A third-order simulation model of VM heat pumps has been developed. This model allows consideration of the major losses such as heat conduction losses through regenerators and displacers, pumping losses and wall-to-gas heat transfer losses in working volumes, in addition to the heat exchanger and regenerator losses. The working volume was divided into 12 control volumes and conservation equations of mass and energy were applied to each control volume. Pressure drop was considered in regenerators only. Thermodynamic behavior of working fluid in a VM heat pump was investigated and effects of major losses on the performance of a VM heat pump were shown.

  • PDF

A Third-order Simulation Model of a Vuilleumier Cycle Heat Pump

  • Kang, Young-Goo;Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.80-92
    • /
    • 1998
  • A third-order simulation model of a Vuilleumier{VM) heat pump has been developed. This model takes into account the major losses such as the heat conduction losses through regenerators and displacers, the pumping losses and the wall-to-gas heat transfer losses in active volumes, in addition to the heat exchanger and regenerator losses. The working volume was divided into 12 control volumes and the conservation equations of mass and energy were applied to each control volume. Pressure drops were considered in regenerators only. Thermodynamic behavior of the working gas in a VM heat pump was investigated and effects of the major losses and operating conditions on the performance of a VM heat pump were shown.

  • PDF

수화열 저감제를 이용한 콘크리트 수화열 저감법 개발 (Thermal heat reduction of concrete using LHT)

  • 이상호;김용로;정양희;김도수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.701-704
    • /
    • 2006
  • Recently, the attention is paid to the problem of thermal crack by hydration heat according to the increase of high strength and mass concrete structures. At this point, various research has been carried out for the control of hydration heat in high strength and mass concrete. As a part of the research, the application of Low Heat Technology (LHT) for the control of thermal crack by hydration heat was investigated in this study. To investigate the application, it was selected LHT which can reduce hydration heat of concrete with effect in series I and II. Also, it was investigated the characteristics of hydration heat generation of low heat concrete using LHT with binder types in seriesIII.

  • PDF

열회수장치의 열교환 파이프배치 형식별 열교환 성능 (Heat Exchanging Performance as Affected by Arrangement of Heat Exchanging Pipe)

  • 윤용철;강종국;서원명
    • 생물환경조절학회지
    • /
    • 제11권3호
    • /
    • pp.101-107
    • /
    • 2002
  • 본 연구에서는 온실의 온풍식 난방시스템 연통에 장착할 수 있는 폐열 회수기의 성능을 개선하기 위하여 각각 상이하게 설계된 3개의 열교환 장치에 대해 열회수 성능을 실험적으로 비교 분석하였다. A형 열회수시스템의 경우, 초기 투자비용과 현재의 농용 전력요금 하에서 대체로 1년을 전후하여 투자에 대한 보상이 충분한 것으로 판단된다. B형 및 C형 열회수시스템의 경우, 열 회수용 공기 흐름방향이 180$^{\circ}$굴절로 저항이 크게 발생되어 송풍팬의 전압 증가에 따른 유속 증가가 미미하며 동일한 열 교환면적에서는 송풍팬의 공기저항 증대로 열 회수 성능이 현저히 개선되지는 못했지만, 직선형보다 B형의 경우 약 5%. C형의 경우 약 13%정도 높은 열 회수효율을 보였다. 송풍팬의 용량은 A형에 사용된 용량인 25m$^3$/min전후가 적절할 것으로 판단되며, 적정 송풍팬 용량 하에서 열회수성능은 헤어핀형이 직선형보다 효과적인 것으로 나타났다. 다만, 헤어핀형은 물론 직선형에서도 열교환 파이프의 배치밀도, 파이프 길이 및 두께 등의 변화에 따른 최적화 연구가 수반되어야 할 것으로 판단된다.

LabVIEW를 이용한 열병합 발전의 열.전기 제어 시스템 (Heat.Power Control System of Cogeneration using LabVIEW)

  • 이송근;김일주;이규화
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.93-98
    • /
    • 2009
  • 열병합발전은 전기와 열을 동시에 발생시켜 에너지 이용률을 높이는 고효율에너지 발전 체계를 말하며, 시스템에 전기에너지를 공급하는 과정에서 배출되는 에너지를 회수하여 산업용 공정, 지역난방, 온수 공급 등에 이용함으로써 종합효율 향상에 많은 영향을 끼친다. 본 논문에서는 LabVIEW를 이용하여 열병합 발전의 흐름을 화면으로 보이고, TCP/IP 통신을 이용하여 지역에너지 시스템을 원거리에서도 제어가 가능한 열 전기 제어 시스템을 보이고자 한다. 열 전기 제어 시스템이 원거리에서 제어가 가능함을 보이기 위해 4대의 컴퓨터로 시뮬레이션을 보였다.

타원주격자를 사용한 고체면에서의 복사열전달의 방향제어-에너지 집중 방향제어- (Directional Control of Radiation Heat Transfer from Solid Surface Using Grating Composed of Parallel Elliptical Cylinders -Directional Control of Energy Concetration-)

  • 고흥;증전영준;조병수;강영규
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2933-2943
    • /
    • 1996
  • A grating composed of elliptical cylinders (GEC), specially designed, is applicable to control of radiation heat transfer from a heated surface, as reported in our previous work. In this study, an analysis of radiation heat transfer is performed for a physical model in which the GEC is placed in front of a heated black-base surface and the major axes of the elliptical cylinders are inclined as a certain angle from the normal to the row of elliptical cylinders. Numerical solutions are obtained. Variations of the direction and the radiative energy concentration with slant angle of the major axis are shown for some parameters. It is verified that the GEC is able to widely change the direction of radiation heat transfer from the heated surface.

Thermal-hydraulic and load following performance analysis of a heat pipe cooled reactor

  • Guanghui Jiao;Genglei Xia;Jianjun Wang;Minjun Peng
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1698-1711
    • /
    • 2024
  • Heat pipe cooled reactors have gained attention as a potential solution for nuclear power generation in space and deep sea applications because of their simple design, scalability, safety and reliability. However, under complex operating conditions, a control strategy for variable load operation is necessary. This paper presents a two-dimensional transient characteristics analysis program for a heat pipe cooled reactor and proposes a variable load control strategy using the recuperator bypass (CSURB). The program was verified against previous studies, and steady-state and step-load operating conditions were calculated. For normal operating condition, the predicted temperature distribution with constant heat pipe temperature boundary conditions agrees well with the literature, with a maximum temperature difference of 0.4 K. With the implementation of the control strategy using the recuperator bypass (CSURB) proposed in this paper, it becomes feasible to achieve variable load operation and return the system to a steady state solely through the self-regulation of the reactor, without the need to operate the control drum. The average temperature difference of the fuel does not exceed 1 % at the four power levels of 70 %,80 %, 90 % and 100 % Full power. The output power of the turbine can match the load change process, and the temperature difference between the inlet and outlet of the turbine increases as the power decreases.

A Time Dependent Analysis of Thermal Environment in Beehouse

  • Lee, Suk-Gun;Li, Zhenhai;Choi, Kwang-Soo
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1997년도 가을 심포지움 및 학술논문발표요지
    • /
    • pp.20-26
    • /
    • 1997
  • The design or analysis of beehouse inside temperature environment based on steady heat transfer theory causes much deviation and theoretically it is impossible to control the inside temperature lower than the outside temperature under the condition that the bee produces heat and no cooling equipment is installed. But in practical use of beehouse, the inside temperature is somehow lower than the outside temperature because of the heat inertia of concrete floor. (omitted)

  • PDF