Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.12.737

Size Control of Gold Nanoparticles by Heat Treatment and Its Use as a Catalyst for Single-Walled Carbon Nanotube Growth  

Lee, Seung-Hwan (Department of Nano Applied Engineering, Kangwon National University)
Jeong, Goo-Hwan (Department of Nano Applied Engineering, Kangwon National University)
Publication Information
Korean Journal of Materials Research / v.23, no.12, 2013 , pp. 737-744 More about this Journal
Abstract
We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.
Keywords
single-walled carbon nanotubes; Au nanoparticles; diameter control; horizontal alignment; chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Liu, L. Jial, Y. Yao, X. Xian and J. Zhang, Adv. Mater., 22, 1 (2010).   DOI   ScienceOn
2 H. Liu, T. Tanaka, Y. Urabe and H. Kataura, Nano Lett., 13, 1996 (2013).   DOI   ScienceOn
3 R. Saito, M. S. Dresselhaus and G. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, (1998).
4 A. M. Rao, P. C. Eklund, S. Bandow, A. Thess and R. E. Smalley, Nature, 388, 257 (1997).   DOI   ScienceOn
5 G. H. Jeong, A. A. Farajian, R. Hatakeyama, T. Hirata, T. Yaguchi, K. Tohji, H. Mizuseki and Y. Kawazoe, Phys. Rev. B, 68, 075410 (2003).   DOI   ScienceOn
6 M. Ishida, H. Hongo, F. Nihey and Y. Ochiai, Jpn. J. Appl. Phys., 43, L1356 (2004).   DOI   ScienceOn
7 A. Javey and H. Dai, J. Am. Chem. Soc., 127, 11942 (2005).   DOI   ScienceOn
8 Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang and H. Dai, J. Phys. Chem. B, 105, 11424 (2001).   DOI   ScienceOn
9 H. C. Choi, W. Kim, D. Wang and H. Dai, J. Phys. Chem. B, 106, 12361 (2002).   DOI   ScienceOn
10 G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura and Y. Homma, J. Appl. Phys., 98, 124311 (2005).   DOI   ScienceOn
11 G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, Appl. Phys. Lett., 90, 043108 (2007).   DOI   ScienceOn
12 W. S. Song, C. H. Jeon, Y. S. Kim, Y. T. Kwon, D. S. Jung, S. W. Jang, W. C. Choi, J. S. Park, R. Saito and C. Y. Park, ACS Nano, 4, 1012 (2010).   DOI   ScienceOn
13 H. Ago, Y. Ayagaki, Y. Ogawa and M. Tsuji, J. Phys. Chem. C, 115, 13247 (2011).   DOI   ScienceOn
14 T. Kato and R. Hatakeyama, J. Am. Chem. Soc., 130, 8101 (2008).   DOI   ScienceOn
15 X. Yu, J. Zhang, W. Choi, J. Y. Choi, J. M. Kim, L. Gan and Z. Liu, Nano Lett., 10, 3343 (2010).   DOI   ScienceOn
16 J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng and C. Zhou, Nat. Commun., 3, 1199 (2012).   DOI   ScienceOn
17 J. J. Kim, B. J. Lee, S. H. Lee and G. H. Jeong, Nanotechnology, 23, 105607 (2012).   DOI   ScienceOn
18 H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami and M. Tsuji, Chem. Phys. Lett., 408, 433 (2005).   DOI   ScienceOn
19 C. Kocabas, S. H. Hur, A. Gaur, M. Meitl, M. Shim and J. Rogers, Small, 11, 1110 (2005).
20 S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, A. V. Rotkin and J. A. Rogers, Nat. Nanotechnol., 2, 230 (2007).   DOI   ScienceOn
21 G. H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi and Y. Homma, Carbon, 45, 978 (2007).   DOI   ScienceOn
22 J. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. Duesberg, S. Roth and J.-L. Sauvajol, Phys. Rev. Lett., 95, 217401 (2005).   DOI   ScienceOn
23 Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Huang, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi and H. Dai, Nano Lett., 4, 317 (2004).   DOI   ScienceOn
24 A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus and M. S. Dresselhaus, Science, 275, 187 (1997).   DOI   ScienceOn