• 제목/요약/키워드: heat conduction problem

검색결과 153건 처리시간 0.038초

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.

변태잠열을 고려한 담금시편의 온도 및 조직분포에 대하여 (On the distribution of temperature and metallic structures in quenching process considering latent heat of phase transformation)

  • 민수홍;구본권
    • 오토저널
    • /
    • 제6권4호
    • /
    • pp.46-53
    • /
    • 1984
  • The analysis of temperature distribution and change of metallic structures during water quench were presented by finite element method. In temperature calculation the equation of unsteady state hear conduction problem considering latent heat due to phase transformation was applied to finite solid cylinder, SM 45C of 40mm diameter and 40mm height. In metallic structure analysis iso-thermal transformation curve and the equations of evolution in pearlite-martensite transformation were applied. The calculated results upon temperature and metallic structures were agreed with those of experimental observations.

  • PDF

최소 에너지기법을 이용한 역 열전도 경계요소법의 공동 탐지 (Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique)

  • 최창용
    • 비파괴검사학회지
    • /
    • 제17권4호
    • /
    • pp.237-247
    • /
    • 1997
  • 경계요소법에 최소 에너지기법을 적용하여 적외선 스캐닝을 이용한 물체 내부 미지의 공동(cavity)을 탐지하는 기하학적 역 열전도 문제의 해를 구하였다. 이 문제에서 경계요소식은 에너지 최소화 과정을 적용한, quadratic programming 문제로 전환되었으며, 가상적인 내부 경계가 실제 공동의 영역 내부에 위치하도록 정의되었다. 적외선 스캐닝 표면 온도가 측정 오차의 구속 조건을 만족하도록 가상 내부 경계에서의 온도 분포를 결정한 후, 이를 내부 경계 조건으로 하는 경계요소 해석을 수행하여 미지 경계의 위치를 결정하였다. 공동 탐지 알고리듬이 제시되었고 수치해석을 통하여 역 해법에 대한 최소에너지 기법의 효과를 분석하였다.

  • PDF

비국소 경계 조건들을 가진 상미분 방정식들의 근의 존재성에 음함수 정리들의 응용 I (Application of Implicit Function Theorem to Existence of Solutions to Ordinary Differential Equations with Nonlocal Boundary Conditions, I)

  • 도태석
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.219-224
    • /
    • 2002
  • We consider the problem y"=a(x,y)(y-b), y(0)=0, y'(1)=g(y(${\xi}$), y'(${\xi}$)), (0${\xi}$ fixed in(0,1)) as a model of steady-slate heat conduction in a rod when the heat flux at the end x = 1 is determined by observation of the temperature and heat flux at some interior point ${\xi}$. We establish conditions sufficient for existence, uniqueness.

  • PDF

밀폐공간에 놓인 전자 칩의 열발산에 복사 열전달이 미치는 영향 (An effect of Radiation Heat Transfer on the Thermal Dissipation from the Electronic Chip in an Enclosure)

  • 최인수
    • 한국산업융합학회 논문집
    • /
    • 제12권4호
    • /
    • pp.179-186
    • /
    • 2009
  • Electronic components in an enclosure have been investigated to prevent undesired thermal problems. The electronic devices, such as ECUs of automotive engines, are operated under the contaminated environments, so that they rely on the passive cooling without any fluid-driving methods. Therefore the radiation heat dissipation plays more important role than the conduction and convection heat transfer. Hence their combined heat dissipation phenomena have been simulated by a numerical model to reveal the effects of supplied heat flux, emissivity of material, geometry of enclosure, charging gas and pressure. The result showed that the radiation had a significant effect on the heat dissipation of module in an enclosure, and some space above the module should be reserved to prevent its thermal problem. In addition, the higher thermal conductivity and pressure of gas in an enclosure could be necessary to improve the thermal dissipation from the electronic devices.

  • PDF

High-effectiveness miniature cryogenic recuperator

  • Hwang, Gyu-Wan;Jung, Je-Heon;Jeong, Sang-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.74-79
    • /
    • 2009
  • The performance of cryogenic refrigerator greatly depends on the effectiveness of heat exchanger, which generates major entropy at low temperature. There are numerous types of heat exchanger available, but it is not easy to apply most of them to cryogenic application because the cryogenic heat exchanger must have high effectiveness value as well as small conduction loss in the environment of considerable temperature difference. In this paper, two kinds of heat exchanger are noticeably introduced for high-effectiveness miniature cryogenic recuperator(recuperative heat ex-changer). Also, the flow mal-distribution problem, which is a critical issue of performance deterioration in a high-effectiveness recuperator, is addressed with simplified model, and its alleviation method is discussed.

평판의 층류 막응축에서 복합열전달에 대한 근사해 (Approximate Solution for Conjugate Heat Transfer of Laminar Film Condensation on a Flat Plate)

  • 이억수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.509-518
    • /
    • 2005
  • Liquid film thickness in laminar film condensation for flow over a flat plate generally is so thin that both fluid acceleration and thermal convection within the liquid film can be neglected. An integral solution method is proposed to solve the conjugate problems of laminar film condensation and heat conduction in a solid wall. It is found that approximate solutions of the governing equations involve four physical parameters to describe the conjugate heat transfer problem for laminar film condensation. It is shown that the effects of interfacial shear. mass transfer and local heat transfer are strongly dependent on the thermo-physical properties of the working fluids and the Jacob number.

열 유입률을 고려한 자계-열계 다목적 위상최적설계 (Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate)

  • 심호경;왕세명;문희곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF

MONTE CARLO METHOD EXTENDED TO HEAT TRANSFER PROBLEMS WITH NON-CONSTANT TEMPERATURE AND CONVECTION BOUNDARY CONDITIONS

  • Cho, Bum-Hee;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.65-72
    • /
    • 2010
  • The Monte Carlo method for solving heat conduction problems [1-3] is extended for non-constant temperature boundary conditions in this study. The new method can treat problems with any given non-constant boundary temperatures, including heat convection problems with non-constant fluid bulk temperature. A set of problems, particularly the heat transfer problem in a pebble fuel, is analyzed by this new method. In addition, a new method to reduce the statistical errors in kernel fuel regions is introduced when the Monte Carlo method is applied to a pebble fuel.

MESHLESS AND HOMOTOPY PERTURBATION METHODS FOR ONE DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEM WITH NEUMANN AND ROBIN BOUNDARY CONDITIONS

  • GEDEFAW, HUSSEN;GIDAF, FASIL;SIRAW, HABTAMU;MERGIAW, TADESSE;TSEGAW, GETACHEW;WOLDESELASSIE, ASHENAFI;ABERA, MELAKU;KASSIM, MAHMUD;LISANU, WONDOSEN;MEBRATE, BENYAM
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.675-694
    • /
    • 2022
  • In this article, we investigate the solution of the inverse problem for one dimensional heat equation with Neumann and Robin boundary conditions, that is, we determine the temperature and source term with given initial and boundary conditions. Three radial basis functions(RBFs) have been used for numerical solution, and Homotopy perturbation method for analytic solution. Numerical solutions which are obtained by considering each of the three RBFs are compared to the exact solution. For appropriate value of shape parameter c, numerical solutions best approximates exact solutions. Furthermore, we have shown the impact of noisy data on the numerical solution of u and f.