• Title/Summary/Keyword: heat coefficient

Search Result 2,567, Processing Time 0.023 seconds

Study on Evaporation Heat Transfer of R-l34a, R-407C, and R-410A in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 증발 열전달에 관한 실험적 연구)

  • 박재홍;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.845-854
    • /
    • 2004
  • The evaporation heat transfer coefficient for R-l34a, R-407C (a mixture of 23wt% R-32, 25 wt% R-125, and 52 wt% R-l34a) and R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the exchanger by four plates of commercial geometry with a corrugated sinusoid shape of a chevron angle of 45 degree. The effects of the mean vapor quality, mass flux, heat flux, and saturation temperature of different refrigerants on the evaporation heat transfer were explored in detail. Similar to the case of a Plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. It is found that the evaporation heat transfer coefficient in the plates is much higher than that in circular pipes. The present data show that the evaporation heat transfer coefficients of all refrigerants increase with the vapor quality. At a higher mass flux h, is higher than for the entire range of the vapor quality. Raising the imposed wall heat flux was found to slightly improve h$_{r}$, while h$_{r}$ is found to be lower at a higher refrigerant saturation temperature. A comparison of the performance of the various refrigerants reveals that R-410A has the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. Based on the present data, empirical correlations of the evaporation heat transfer coefficient were proposed.sed.

A Review on the Performance of Fin-and-Tube Heat Exchangers Under Frosting and Defrosting Conditions

  • Kim, Yong-Chan;Lee, Ho-Seong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.152-157
    • /
    • 2005
  • This paper reviews the literature on the performance of fin-and-tube heat exchangers under frosting and defrosting conditions. The effects of frosting and defrosting on the following parameters were discussed: frost growth, overall heat transfer coefficient, surface roughness, and surface characteristics on the heat exchanger. Comparisons of the experimental results and empirical correlations that were obtained from open literature were presented. In addition, a review of the defrosting methods was conducted.

Performance Analysis of an Earth Tube Heat Exchanger(I) -Temperature Variation Characteristics and Heat Exchange Performance on the Mode of Continuous Operation (지중매설관 열교환장치의 성능분석(I) -연속운전실험에서의 온도특성 및 열교환성능-)

  • Kim, Y.B.;Paek, Y.
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.436-448
    • /
    • 1996
  • An earth tube soil air heat exchange system was designed, installed and operated as a single pass heat exchanger to utilize the geothermal energy as an natural energy source. This study was undertaken to investigate the potential of the heating and cooling, energy gain, heat exchange efficiency and coefficient of performance of the system. The system consisted of 30m in length and 30cm in diameter polyethylene pipes buried 2m deep in soil. Maximum heating and cooling performance were 2.51㎾ and 1.26㎾ at the air mass rate of 21cmm. Energy gain and coefficient of performance were the function of temperature difference between outside air and soil temperature. They were expressed as Q=0.33$ imes$$Delta T_{max}$+0.134(㎾) for energy gain and COP=0.44$ imes$$Delta T_{max}$+0.178 for coefficient of performance with correlation factor of 0.95. The mean of heat exchange efficiencies was 85.6%.

  • PDF

Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder (가열된 회전원주를 지나는 정상유동 및 열전달해석)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

Heat Transfer Characteristics of Small Slush Maker (소형 슬러시 제조기의 전열현상에 관한 연구)

  • Kim, Do-Young;Kim, Nae-Hyun;Oh, Wang-Kyu;Choi, Yong-Min;Byun, Ho-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.346-350
    • /
    • 2008
  • Tests were conducted to obtain heat transfer coefficients during slush formation from 10% sucrose solution. The slush was made by scraping the ice formed on the cylinder. Cold brine was supplied inside of the cylinder to cool the outer surface. Below a certain brine temperature, which was $5^{\circ}C$ in this study, the solution was supercooled, and suddenly turned into ice. The super-cooling increases as the brine temperature increased. During slush formation, the heat transfer coefficient oscillated significantly, due to periodic removal of ice chunk form the surface. The average heat transfer coefficient during slush formation was approximately twice of that obtained during single phase cooling. The heat transfer coefficient was also affected by the brine temperature with increasing heat transfer coefficient at lower brine temperature.

  • PDF

An Experimental Study on Evaporative Heat Transfer Characteristics in Micro-Fin Tubes Before and After Expansion Process (마이크로핀관의 확관 전후 증발열전달 특성에 관한 실험적 연구)

  • 전상희;황윤욱;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.932-940
    • /
    • 2000
  • An experimental study on evaporative heat transfer characteristics in micro-fin tubes before and after expansion process has been performed with R-22. Single-grooved micro-fin tubes with outer diameter of 9.52 mm were used as test sections, and it was uniformly heated by applying direct current to the test tubes. Experiments were conducted at mass flow rates of 20 and 30 kg/hr. For each mass flow rate condition, evaporation temperature was set at 5 and $15^{\circ}C$and heat flux was changed from 6 to 11 kW/$m^2$ The evaporative heat transfer coefficient of micro-fin tubes after expansion is decreased because of the crush of fins and enlargement of inner diameter compared to that before expansion. Convective boiling effect decreased remarkably at higher quality range in the micro-fin tube after expansion, and the difference of the heat transfer coefficient in micro-fin tubes before and after expansion was greater for higher quality region. The evaporative heat transfer coefficient of the micro-fin tube after expansion was 19.9% smaller on the average than that before expansion.

  • PDF

Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-407C (혼합냉매 R-407C의 증발 열전달과 압력강하)

  • Roh, Geon-Sang;Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.542-549
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a horizontal copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300\;kg/m^2s$ and the saturation temperature of evaporator were $5^{\circ}C$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the increase of mass flux and vapor quality. The evaporation heat transfer coefficients of R-22 is about $5.68{\times}46.6%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is similar to that of R-407C. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of R-22 and R-407C. therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of R-22 and R-407C in a horizontal tube.

Heat Transfer Characteristics During Slush Formation in the Evaporator of a Small Slush Maker (소형 슬러시 제조기 증발기에서 슬러시 형성시 전열 특성)

  • Choi, Yong-Min;Kim, Do-Young;Kim, Nae-Hyun;Lee, Eul-Jong;Kim, Soo-Hwan;Byun, Ho-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.643-648
    • /
    • 2009
  • Tests were conducted to obtain heat transfer coefficients during slush formation from 10% sucrose solution. The slush was made by scraping the ice formed on the cylinder. Cold brine was supplied inside of the evaporator cylinder to cool the outer surface. Below a certain brine temperature, which was $-5^{\circ}C$ in this study, the solution was supercooled, and suddenly turned into ice crystals. During slush formation, the heat transfer coefficient oscillated significantly, due to periodic removal of ice chunk form the surface. The average heat transfer coefficient during slush formation was 40~70% higher than that obtained during single phase cooling. The heat transfer coefficient was also affected by the brine temperature with increasing heat transfer coefficient at higher brine temperature.

An Experimental Study on Condensation Characteristics of Slit Fin-tube Heat Exchanger Using Alternative Refrigerants, R407C and R410A (대체냉매 R407C 및 R410A를 이용한 슬릿휜-관 열교환기의 응축특성에 관한 연구)

  • 전창덕;장경근;강신형;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.706-716
    • /
    • 2002
  • R410A and R407C are considered to be alternative refrigerants to R22 for the air-conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerants R410A and R407C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. Between the R22 and R410A, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases.

Analysis of forced convective laminar film boiling heat transfer on vertical surface (垂直平板에서의 强制對流 膜沸騰 流動의 熱傳達解析)

  • 이규식;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.425-436
    • /
    • 1987
  • Accurate predictions of heat transfer coefficient of vertical laminar film-boiling are very important in many engineering applications. There are many predictions, however they are not exact as yet, since they have used the assumption of constant thermodynamic properties in the analysis. In this paper, heat transfer of vertical film boiling was analysized by Runnge Kutta method using veriable thermodynamic properties. 1/4 interval method was exployed for the prediction of unknown wall boundary condition. Numerical computations were performed with varying the wall temperature and the free stream velocity of liquid. Results show that assumption of constant thermodynamic properties induced considerable error in predicting the heat transfer coefficient, friction factor, film thickness, and critical length for transition to turbulent flow. Comparision of the predicted heat transfer coefficient of present analysis with that from Bromley's correlation shows that the use of general latent heat in Bromely equation instead of modified latent heat is more desireable since it makes the coefficient of Bromley equation into constant.