• Title/Summary/Keyword: heat analysis

Search Result 9,623, Processing Time 0.034 seconds

On the Persistence of Warm Eddies in the East Sea (동해 난수성 에디의 장기간 지속에 관하여)

  • JIN, HYUNKEUN;PARK, YOUNG-GYU;PAK, GYUNDO;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.318-331
    • /
    • 2019
  • In this study, comparative analysis is performed on the long-term persisted warm eddies that were generated in 2003 (WE03) and in 2014 (WE14) over the East Sea using the HYCOM reanalysis data. The overshooting of the East Korea Warm Current (EKWC) was appeared during the formation period of those warm eddies. The warm eddies were produced in the shallow Korea Plateau region through the interaction of the EKWC and the sub-polar front. In the interior of the both warm eddies, a homogeneous water mass of about $13^{\circ}C$ and 34.1 psu were generated over the upper 150 m depth by the winter mixing. In 2004, the next year of the generation of the WE03, the amount of the inflow through the western channel of the Korea Strait was larger, while the inflow was lesser than its climatology during 2015 corresponding to the development period of the WE14. The above results suggest that the heat and salt are supplied in the warm eddies through the Tsushima Warm Current (TWC), however the amount of the inflow through the Korea Strait has negligible impact on the long-term persistency of the warm eddies. Both of the warm eddies were maintained more than 18 months near Ulleung island, while they have no common feature on the pathways. In the vicinity of the Ulleung basin, large and small eddies are continuously created due to the meandering of the EKWC. The long-term persisted warm eddies in the Ulleung Island seem to be the results of the interaction between the pre-existed eddies located south of the sub-polar front and fresh eddies induced by the meanderings of the EKWC. The conclusion is also in line with the fact that the long-term persisted warm eddies were not always created when the overshooting of the EKWC was appeared.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol (메탄올 내부개질형 용융탄산염 연료전지의 성능)

  • Ha, Myeong Ju;Yoon, Sung Pil;Han, Jonghee;Lim, Tae-Hoon;Kim, Woo Sik;Nam, Suk Woo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2020
  • Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.

Temperature change and performance of bur efficiency for two different drill combinations (두 가지 임플란트 드릴 조합에 따른 온도 변화 및 효율 비교)

  • Hwang-Bo, Heung;Park, Jae-Young;Lee, Sang-Youn;Son, Keunbada;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.143-151
    • /
    • 2022
  • Purpose. The purpose of this study was to evaluate the performance efficiency of two different drill combinations according to the heat generated and drilling time. Materials and methods. In this study, cow ribs were used as research materials. To test the specimen, cow bones were rid of fascia and muscles, and a temperature sensor was mounted around the drilling area. The experimental group was divided into a group using a guide drill and a group using a Lindmann drill according to the drill used before the initial drilling. The drilling sequence of the guide drilling group is as follows; guide drill (ø 2.25), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The drilling sequence of the Lindmann drilling group is as follows; Lindmann drill (ø 2.10), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The temperature was measured after drilling. For statistical analysis, the difference between the groups was analyzed using the Mann-Whitney U test and the Friedman test was used (α = .05). Results. The average performance efficiency for each specimen of guide drilling group ranged from 0.3861 to 1.1385 mm3/s and that of Lindmann drilling group ranged from 0.1700 to 0.4199 mm3/s. The two drill combinations contained a guide drill and Lindmann drill as their first drills. The combination using the guide drill demonstrated excellent performance efficiency when calculated using the drilling time (P < .001). Conclusion. Since the guide drill group showed better performance efficiency than the Lindmann drill group, the use of the guide drill was more suitable for the primary drilling process.

Assessing Middle School Students' Understanding of Radiative Equilibrium, the Greenhouse Effect, and Global Warming Through Their Interpretation of Heat Balance Data (열수지 자료 해석에서 드러난 중학생의 복사 평형, 온실 효과, 지구 온난화에 대한 이해)

  • Chung, Sueim;Yu, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.770-788
    • /
    • 2021
  • This study aimed to determine whether middle school students could understand global warming and the greenhouse effect, and explain them in terms of global radiative equilibrium. From July 13 to July 24 in 2021, 118 students in the third grade of middle school, who completed a class module on 'atmosphere and weather', participated in an online assessment consisting of multiple-choice and written answers on radiative equilibrium, the greenhouse effect, and global warming; 97 complete responses were obtained. After analysis, it was found that over half the students (61.9%) correctly described the meaning of radiative equilibrium; however, their explanations frequently contained prior knowledge or specific examples outside of the presented data. The majority of the students (92.8%) knew that the greenhouse effect occurs within Earth's atmosphere, but many (32.0%) thought of the greenhouse effect as a state in which the radiative equilibrium is broken. Less than half the students (47.4%) answered correctly that radiative equilibrium occurs on both Earth and the Moon. Most of the students (69.1%) understood that atmospheric re-radiation is the cause of the greenhouse effect, but few (39.2%) answered correctly that the amount of surface radiation emitted is greater than the amount of solar radiation absorbed by the Earth's surface. In addition, about half the students (49.5%) had a good understanding of the relationship between the increase in greenhouse gases and the absorption of atmospheric gases, and the resulting reradiation to the surface. However, when asked about greenhouse gases increases, their thoughts on surface emissions were very diverse; 14.4% said they increased, 9.3% said there was no change, 7.2% said they decreased, and 18.6% gave no response. Radiation equilibrium, the greenhouse effect, and global warming are a large semantic network connected by the balance and interaction of the Earth system. This can thus serve as a conceptual system for students to understand, apply, and interpret climate change caused by global warming. Therefore, with the current climate change crisis facing mankind, sophisticated program development and classroom experiences should be provided to encourage students to think scientifically and establish scientific concepts based on accurate understanding, with follow-up studies conducted to observe the effects.

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O) (염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Cho, Kye Hong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.399-409
    • /
    • 2021
  • In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 ℃, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 ℃, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 ℃, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.

Study on Horizontal and Vertical Temperature Analysis of Cable Fire in Common Duct using Room Corner Experiment (룸코너 실험을 이용한 공동구 케이블 화재 시 수평·수직 방향 온도 분석에 관한 연구)

  • JaeYeop Kim;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.634-643
    • /
    • 2023
  • Purpose: Underground common duct fires are steadily occurring, and the proportion of property damage is particularly large among property and human casualties caused by fires. Especially, cable fires that occur in common areas can spread vertically quickly and pose a great risk. This paper aims to scientifically analyze the nature of the fire by reproducing the fire through experiments. Method: To analyze the characteristics of cable fires in underground common duct, heat release rate and temperature changes were measured through Room-corner (ISO 9705) test, and the vertical and horizontal propagation of cable fires was quantitatively compared and analyzed. Result: The Room Corner Test (ISO 9705) was used to compare the temperature changes at each data logger point. The results showed that the time it took for the fire to reach the ignition temperature in the horizontal and vertical directions from the center point of the first-tier cable was 589 seconds and 536 seconds, respectively, which means that the vertical fire propagation is 53 seconds faster than the horizontal propagation. This proves that the vertical propagation of fire is relatively faster than the horizontal propagation. The horizontal propagation speed of the fire was also compared for each floor cable tray. The results showed that the third-tier cable propagated at 3.4 times the speed of the second-tier cable, and the second-tier cable propagated at 1.5 times the speed of the first-tier cable. This means that the higher the cable is located, the faster the fire spreads and the larger the fire becomes. Conclusion: This study identified the risks of cable fires and analyzed the risks of vertical fire propagation during cable fires based on the results of the Room Corner Test. Studies to prevent the spread of fire and fire response policies to prevent vertical fire propagation are required. The results of this study are expected to be used to assess the fire risk of common areas and other fires.