• Title/Summary/Keyword: heart mitochondria

Search Result 79, Processing Time 0.024 seconds

Fine Structure and Immunogoldlabeling of Crystalline Inclusion Bodies in Mitochondria (미토콘드리아내 결정함유물의 미세구조 및 면액황금표식법)

  • ;;R.A. Capaldi
    • The Korean Journal of Zoology
    • /
    • v.31 no.1
    • /
    • pp.62-70
    • /
    • 1988
  • The distribution of respiratory chain complexes in beef heart and human muscle mitochondria has been explored by immunoeledron microscopy with antibodies made against beef heart mltochondriai proteins in conjundion with protein A cofloidai gold (l2nm particles). The antibodies used were made against NADH-conezyme Q reductase(complex I), ubiquinol-cytochrome-c-oxldoreductase (complex III) and cytochrome-c-oxidase(complex IV). Labeling of bed heart tissue with any of these antihodies gave gold particles randomly distributed along the mitochondrial inner membrane. The labeling of muscle tIssue mitochondria from a patient with a mitochondrial myopathy localized by biochemical analysis to complex III was quantitated and compared with the labeling of human control muscle tissue mitochondria. Four kinds of morphological changes in the mitochondrial fine strudure in the myopathy patient tissue have been found; paracrystalline inclusions consistIng of densely packed multi- lamellar structures, globular crystalline inclusions with high electron density, multilamellar strudure inclusion body(compadly and irregularly arranged concentric whirl shaped cristae)and golbular cyrstalilne inclusions located in the center of the whirl shaped cristae. Compex I and cytochrome-c-oxldase antihodies reacted to the same level in the mitochondria containing the crystalline inclusions and control mitochondria. Antibodies to complex III reacted very poorly to the mitochondria containing the crystalline Inclusions but strongly to control mitchondria. The globular crystalline inclusions in the mitochondria are not reacted antibodies to respiratory chain complexes.

  • PDF

Effects of Myocardial Protection of Verapamil in Serum: Under Langendorff Apparatus in Ischemic Arrest Heart (Verapamil [anticalcium agent]의 심근 보호작용Langendorff씨 장치하의 심근 보호 작용)

  • Yu, Hong-Seok;Jeong, Jeong-Gi;Lee, Dong-Jun
    • Journal of Chest Surgery
    • /
    • v.23 no.6
    • /
    • pp.1074-1083
    • /
    • 1990
  • This study was evaluated the metabolic, physiologic and histologic effects of myocardial protection of verapamil[isoveratril]on isolated rat hearts to 90 minutes of ischemic arrest. Heart was perfused with a modified Kreb’s Henseleit bicarbonate buffer with glucose and arrested with retrograde coronary perfusion by glucose insulin[GI], potassium and verapamil. Mean aortic systolic pressure, heart rate, coronary flows were measured and morphologic changes were examined during working heart perfusion. Perfusion and arrest were controlled four groups subjected 60 isolated rat hearts. Four groups hearts reperfused during 40 minutes after 90 minutes global ischemia for physiologic recovery. 15 hearts of four groups were assayed to histological morphologic changes. GI treated hearts recovered less than 28% of function and changed more than 80% of mitochondria of control group. Verapamil hearts[0.2, 0.1 gm/kg] recovered more than 88% of function and permitted the maintenance of continuous cellular level of Serum Glutamic Oxalaxetate Transaminase[SGOT], but declined 28% of Phosphate Kinase[CP], GI treated heart showed widespread evidence of extensive damage of mitochondria. The damage was that interstitial huge edema are present and there was contraction band formation within the swollen cells. The verapamil and potassium group were not found morphologic change compared with control group. Their functions were shown that metabolic and physiologic action of verapamil-group lasted 20 minutes longer than potassium group.

  • PDF

The Formation and Change of Cytochrome-c-oxidase in the Mitochondria of the Bovine Cardiac Muscle (우(牛)심근조직의 mitochondria에서 cytochrome-c-oxidase의 형성과 변화)

  • Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.125-133
    • /
    • 2008
  • Cytochrome-c-oxidase in mitochondria membrane is one of the most important factors for energy generation in the cell. As well as it is electron transfer enzyme, it is also heavily related to the apoptosis and other pathologic conditions. Meanwhile, porin is a protein located in inner and outer membranes of mitochondria, which is assumed to be functionally correlated with cytochrome-c-oxidase. It functions as forming electron transfer chain and conveying ATP. Therefore, using the immune-microscopy, It compared the distribution of cytochrome-c-oxidase and porin to figure out the formation and changes on cytochrome-c-oxidase in mitochondrial cristae. The sarcroplasm of cardic muscle tissue has many mitochondria. They are classified into two groups: the mitochondria with many cytochrome-c-oxidase and the mitochondria with only porins. The mitochondria with porins had few cytochrome-c-oxidases in their membrane; in contrast, the other mitochondria with rich cytochrome-c-oxidase had few porins in their walls. In addition, according to the location of the tissue in bovine heart, distribution of those kind of mitochondria had been clearly separated. As a result, it could be assumed that immature mitochondria has many porins to transfer the protein materials from sarcroplasm through the porins, and they made cytochrome-c-oxidase until it is enough, and then they decreased the porin and maintained minimum number of the porin.

An experimental approach to study the function of mitochondria in cardiomyopathy

  • Chung, Youn Wook;Kang, Seok-Min
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.541-548
    • /
    • 2015
  • Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy.

Protective Effect of Right Ventricular Mitochondrial Damage by Cyclosporine A in Monocrotaline-induced Pulmonary Hypertension

  • Lee, Dong Seok;Jung, Yong Wook
    • Korean Circulation Journal
    • /
    • v.48 no.12
    • /
    • pp.1135-1144
    • /
    • 2018
  • Background and Objectives: Mitochondria play a key role in the pathophysiology of heart failure and mitochondrial permeability transition pore (MPTP) play a critical role in cell death and a critical target for cardioprotection. The aim of this study was to evaluate the protective effects of cyclosporine A (CsA), one of MPTP blockers, and morphological changes of mitochondria and MPTP related proteins in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods: Eight weeks old Sprague-Dawley rats were randomized to control, MCT (60 mg/kg) and MCT plus CsA (10 mg/kg/day) treatment groups. Four weeks later, right ventricular hypertrophy (RVH) and morphological changes of right ventricle (RV) were done. Western blot and reverse transcription polymerase chain reaction (RT-PCR) for MPTP related protein were performed. Results: In electron microscopy, CsA treatment prevented MCT-induced mitochondrial disruption of RV. RVH was significantly increased in MCT group compared to that of the controls but RVH was more increased with CsA treatment. Thickened medial wall thickness of pulmonary arteriole in PAH was not changed after CsA treatment. In western blot, caspase-3 was significantly increased in MCT group, and was attenuated in CsA treatment. There were no significant differences in voltage-dependent anion channel, adenine nucleotide translocator 1 and cyclophilin D expression in western blot and RT-PCR between the 3 groups. Conclusions: CsA reduces MCT induced RV mitochondrial damage. Although, MPTP blocking does not reverse pulmonary pathology, it may reduce RV dysfunction in PAH. The results suggest that it could serve as an adjunctive therapy to PAH treatment.

Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives

  • Huang, Qingxia;Gao, Song;Zhao, Daqing;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.371-379
    • /
    • 2021
  • Mitochondrial dysfunction contributes to the pathogenesis and prognosis of many common disorders, including neurodegeneration, stroke, myocardial infarction, tumor, and metabolic diseases. Ginsenosides, the major bioactive constituents of Panax ginseng (P. ginseng), have been reported to play beneficial roles in the molecular pathophysiology of these diseases by targeting mitochondrial dysfunction. In this review, we first introduce the types of ginsenosides and basic mitochondrial functions. Then, recent findings are summarized on different ginsenosides targeting mitochondria and their key signaling pathways for the treatment of multiple diseases, including neurological disorders, cancer, heart disease, hyperglycemia, and inflammation are summarized. This review may explain the common targets of ginsenosides against multiple diseases and provide new insights into the underlying mechanisms, facilitating research on the clinical application of P. ginseng.

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

  • Yaniv, Yael;Lakatta, Edward G.
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.677-684
    • /
    • 2015
  • Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.

The Actions of Diphenylhydantoin sodium and Quinidine on the Adenosine triphosphatase Activity in Mitochondrial Fraction of Rabbit Heart (가토심근(家兎心筋) Mitochondria 분획내(分劃內) Adenosine triphosphatase 활성도(活性度)에 대(對)한 Diphenylhydantoin sodium 및 Quinidine의 작용(作用))

  • Hong, Ki-Whan
    • The Korean Journal of Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 1972
  • The author studied the actions of ouabain and diphenylhydantoin sodium on the ATPase activity in mitochondrial fraction isolated from rabbit heart and compared with that of quinidine. The results obtained are as follows: 1) In studying the $(Na^++K^+)-activated$ ATPase activity, the rabbit heart isolated was immediately frozen for 7-9 days (ageing of preparation) and thereafter the mitochondria1 fraction obtained by differential centrifugation technic was treated with solution A containing 0.15% deoxycholate for 24-48 hours at $-10^{\circ}C$ before using in experiment. These methods increased the activity ratio to 0.87-0.98. 2) The $(Na^++K^+)-activated$ ATPase activity in mitochondrial fraction of rabbit heart was not completely but markedly inhibited by ouabain. This inhibitory action of ouabain was moderately antagonised by $K^+$ concentration at constant Na concentration. 3) Diphenylhydantoin sodium in concentration of $5{\times}10^{-4}{\sim}10^{-3}M$ stimulated markedly not only $Mg^{++}-dependent$ ATPase activity but also $(Na^++K^+)$-activated ATPase activity and in concentration lower than $10^{-6}M$ had little effect. However, this effect of diphenylhydantoin was markedly increased in the presence of $Na^+$ alone rather than $K^+$ alone, but lesser than that effect in the presence of both $Na^+$ and $K^+$, together. The stimulating effect of diphenylhydantoin was specifically antagonized by ouabaion. 4) When the rabbits were intravenously injected with ouabain and diphenylhydantion respectively, $(Na^++K^+)-activated$ ATPase activity of rabbit heart of ouabain-treated group was much decreased and both $(Na^++K^+)-activated$ ATPase and $Mg^{++}-activated$ ATPase activity were moderately increased in diphenylhydantoin-treated rabbit group. 5) The $(Na^++K^+)-activated$ ATPase activity in mitochondrial fraction of rabbit heart was slightly inhibited by quinidine in high concentration of $10^{-4}M$, but nearly little effect was observed below the concentration of $5{\times}10^{-5}M$. 6) It might be possible to conclude that diphenylhydantoin specifically antagonised the action of ouabain on the membrane ATPase, which is different from the action of quinidine.

  • PDF

Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer

  • Jin, Li-Hui;Wei, Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7015-7019
    • /
    • 2014
  • Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.

Surface Activities of Ginseng Saponins and Their Interactions with Biomolecules'(V) Ginseng Saponins Can Be Vsed in Cytochrome c Isolation (인삼사포닌의 계면활성 및 생체 분자와의 작용 : (V) 미토콘드리아 Cytochrome c 단리에서 인삼사포닌의 추출효과)

  • Lee, Jae-Yang;Lee, Sang-Jik
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 1995
  • The effects of treating bovine heart mitochondria with potassium chloride and surfactants such as digitonin and n-dodecy-$\beta$-maltoside (DMS) including plant saponins on extracting cytochrome c were examined. The spectra given by the cytochrome c-containing solutions from the extraction were inspected to ascertain whether ginseng and bellflower saponins could be used instead of the generally- employed surfactants of digitonin and DMS. These studies implied that the effect of ginseng saponins is superior to that of digitonin but inferior to that of DMS, and give rise to the idea of substitutional property of ginseng saponins for the widely-employed surfactants in the extraction of mitochondria intermembrane cytochrome c. The substitution for the solubilizing surfactants by bellflower saponins could, however, not presumably be anticipated; while ginseng saponin mixture are a suitable substitute.

  • PDF