Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.12.061

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell  

Yaniv, Yael (Biomedical Engineering Faculty, Technion-IIT)
Lakatta, Edward G. (Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH)
Publication Information
BMB Reports / v.48, no.12, 2015 , pp. 677-684 More about this Journal
Abstract
Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.
Keywords
Cardiac denervation; Coupled-clock pacemaker system; Fractal-like behavior; Heart rate variability; Ultradian rhythm of the heart rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cinca J, Moya A, Figueras J, Roma F and Rius J (1986) Circadian variations in the electrical properties of the human heart assessed by sequential bedside electrophysiologic testing. Am Heart J 112, 315-321   DOI
2 Goetze JP, Georg B, Jorgensen HL and Fahrenkrug J (2010) Chamber-dependent circadian expression of cardiac natriuretic peptides. Regul Pept 160, 140-145   DOI
3 Sato R, Mizuno M, Miura T et al (2013) Angiotensin receptor blockers regulate the synchronization of circadian rhythms in heart rate and blood pressure. J Hypertens 31, 1233-1238   DOI
4 Yaniv Y, Sirenko S, Ziman BD, Spurgeon HA, Maltsev VA and Lakatta EG (2013) New evidence for coupled clock regulation of the normal automaticity of sinoatrial nodal pacemaker cells: bradycardic effects of ivabradine are linked to suppression of intracellular Ca(2)(+) cycling. J Mol Cell Cardiol 62, 80-89   DOI
5 Maltsev VA, Yaniv Y, Maltsev AV, Stern MD and Lakatta EG (2014) Modern perspectives on numerical modeling of cardiac pacemaker cell. J Pharmacol Sci 125, 6-38   DOI
6 Massin MM, Maeyns K, Withofs N, Ravet F and Gerard P (2000) Circadian rhythm of heart rate and heart rate variability. Arch Dis Child 83, 179-182   DOI
7 Bilan A, Witczak A, Palusinski R, Myslinski W and Hanzlik J (2005) Circadian rhythm of spectral indices of eart rate variability in healthy subjects. J Electrocardiol 38, 239-243   DOI
8 Hu K, Scheer FA, Buijs RM and Shea SA (2008) The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats. Cardiovasc Res 80, 62-68   DOI
9 Younes A, Lyashkov AE, Graham D et al (2008) Ca(2+)-stimulated basal adenylyl cyclase activity localization in membrane lipid microdomains of cardiac sinoatrial nodal pacemaker cells. J Biol Chem 283, 14461-14468   DOI
10 Mattick P, Parrington J, Odia E, Simpson A, Collins T and Terrar D (2007) Ca2+-stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea-pig sino-atrial node cells and modulates the I(f) pacemaker current. J Physiol 582, 1195-1203   DOI
11 Ko GY, Ko ML and Dryer SE (2001) Circadian regulation of cGMP-gated cationic channels of chick retinal cones. Erk MAP Kinase and Ca2+/calmodulin-dependent protein kinase II. Neuron 29, 255-266   DOI
12 Ko ML, Shi L, Grushin K, Nigussie F and Ko GY (2010) Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 27, 1673-1696   DOI
13 Welsh DK, Takahashi JS and Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72, 551-577   DOI
14 Ikeda M (2004) Calcium dynamics and circadian rhythms in suprachiasmatic nucleus neurons. Neuroscientist 10, 315-324   DOI
15 Colwell CS (2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12, 571-576   DOI
16 Pennartz CM, de Jeu MT, Bos NP, Schaap J and Geurtsen AM (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416, 286-290   DOI
17 Aon MA, Cortassa S and O’Rourke B (2006) The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 91, 4317-4327   DOI
18 Yamashita T, Sekiguchi A, Iwasaki YK et al (2003) Circadian variation of cardiac K+ channel gene expression. Circulation 107, 1917-1922   DOI
19 Isobe Y, Hida H and Nishino H (2011) Circadian rhythm of enolase in suprachiasmatic nucleus depends on mitochondrial function. J Neurosci Res 89, 936-944   DOI
20 Yaniv Y, Juhaszova M, Lyashkov AE, Spurgeon H, Sollott SJ and Lakatta EG (2011) Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand. J Mol Cell Cardiol 51, 740-748   DOI
21 Durgan DJ, Trexler NA, Egbejimi O et al (2006) The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J Biol Chem 281, 24254-24269   DOI
22 Yaniv Y, Juhaszova M, Nuss HB et al (2010) Matching ATP supply and demand in mammalian heart In vivo, in vitro, and in silico perspectives. Ann N Y Acad Sci 1188, 133-142   DOI
23 Levy C, Ter Keurs HE, Yaniv Y and Landesberg A (2005) The sarcomeric control of energy conversion. Ann N Y Acad Sci 1047, 219-231   DOI
24 Yaniv Y, Spurgeon HA, Ziman BD, Lyashkov AE and Lakatta EG (2013) Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand. Am J Physiol Heart Circ Physiol 304, H1428-1438   DOI
25 Yaniv Y, Spurgeon HA, Ziman BD and Lakatta EG (2013) Ca(2)+/calmodulin-dependent protein kinase II (CaMKII) activity and sinoatrial nodal pacemaker cell energetics. PLoS One 8, e57079   DOI
26 Bassiouny HS, Zarins CK, Lee DC, Skelly CL, Fortunato JE and Glagov S (2002) Diurnal heart rate reactivity: a predictor of severity of experimental coronary and carotid atherosclerosis. J Cardiovasc Risk 9, 331-338   DOI
27 Burkeen JF, Womac AD, Earnest DJ and Zoran MJ (2011) Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J Neurosci 31, 8432-8440   DOI
28 Custodis F, Reil JC, Laufs U and Bohm M (2013) Heart rate: a global target for cardiovascular disease and therapy along the cardiovascular disease continuum. J Cardiol 62, 183-187   DOI
29 Hillebrand S, Gast KB, de Mutsert R et al (2013) Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace 15, 742-749   DOI
30 Furlan R, Barbic F, Piazza S, Tinelli M, Seghizzi P and Malliani A (2000) Modifications of cardiac autonomic profile associated with a shift schedule of work. Circulation 102, 1912-1916   DOI
31 Yaniv Y, Tsutsui K and Lakatta EG (2015) Potential effects of intrinsic heart pacemaker cell mechanisms on dysrhythmic cardiac action potential firing. Front Physiol 6, 1-7
32 Rydlewska A, Jankowska EA, Ponikowska B, Borodulin-Nadzieja L, Banasiak W and Ponikowski P (2011) Changes in autonomic balance in patients with decompensated chronic heart failure. Clin Auton Res 21, 47-54   DOI
33 Wu GQ, Shen LL, Tang DK, Zheng DA and Poon CS (2006) Circadian rhythms of spectral components of heart rate variability. Conf Proc IEEE Eng Med Biol Soc 1, 3557-3560
34 Pikkujamsa SM, Makikallio TH, Sourander LB et al (1999) Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory. Circulation 100, 393-399   DOI
35 Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE and Goldberger AL (1995) Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol 28 Suppl, 59-65   DOI
36 Verkerk AO, Wilders R, Coronel R, Ravesloot JH and Verheijck EE (2003) Ionic remodeling of sinoatrial node cells by heart failure. Circulation 108, 760-766   DOI
37 Burger AJ, Charlamb M and Sherman HB (1999) Circadian patterns of heart rate variability in normals, chronic stable angina and diabetes mellitus. Int J Cardiol 71, 41-48   DOI
38 Santulli G and Iaccarino G (2013) Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes. Immun Ageing 10, 10   DOI
39 Liu J, Sirenko S, Juhaszova M et al (2014) Age-associated abnormalities of intrinsic automaticity of sinoatrial nodal cells are linked to deficient cAMP-PKA-Ca(2+) signaling. Am J Physiol Heart Circ Physiol 306, H1385-1397   DOI
40 Bell-Pedersen D, Cassone VM, Earnest DJ et al (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6, 544-556   DOI
41 Reppert SM and Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418, 935-941   DOI
42 Yaniv Y, Lakatta EG and Maltsev AV (2015) From two competing oscillators to one coupled-clock pacemaker cell system. Front Physiol 6, 47
43 Yaniv Y, Lyashkov AE and Lakatta EG (2013) The fractal-like complexity of heart rate variability beyond neurotransmitters and autonomic receptors: signaling intrinsic to sinoatrial node pacemaker cells. Cardiovasc Pharm Open Access 2, 11-14
44 Yaniv Y, Lyashkov AE and Lakatta EG (2013) Impaired Signaling Intrinsic to Sinoatrial Node Pacemaker Cells Affects Heart Rate Variability during Cardiac Disease. J Clin Trials 4, 2167
45 Bigger JT Jr, Steinman RC, Rolnitzky LM, Fleiss JL, Albrecht P and Cohen RJ (1996) Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation 93, 2142-2151   DOI
46 Yaniv Y, Ahmet I, Liu J et al (2014) Synchronization of sinoatrial node pacemaker cell clocks and its autonomic modulation impart complexity to heart beating intervals. Heart Rhythm 11, 1210-1219   DOI
47 Monfredi O, Lyashkov AE, Johnsen AB et al (2014) Biophysical Characterization of the Underappreciated and Important Relationship Between Heart Rate Variability and Heart Rate. Hypertension 64, 1334-1343   DOI
48 Mandel Y, Weissman A, Schick R et al (2012) Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior. Circulation 125, 883-893   DOI
49 Rocchetti M, Malfatto G, Lombardi F and Zaza A (2000) Role of the input/output relation of sinoatrial myocytes in cholinergic modulation of heart rate variability. J Cardiovasc Electrophysiol 11, 522-530   DOI
50 Yaniv Y, Lyashkov AE, Sirenko S et al (2014) Stochasticity intrinsic to coupled-clock mechanisms underlies beat-tobeat variability of spontaneous action potential firing in sinoatrial node pacemaker cells. J Mol Cell Cardiol 77, 1-10   DOI
51 Tong M, Watanabe E, Yamamoto N et al (2013) Circadian expressions of cardiac ion channel genes in mouse might be associated with the central clock in the SCN but not the peripheral clock in the heart. Biol Rhythm Res 44, 519-530   DOI
52 Jeyaraj D, Haldar SM, Wan X et al (2012) Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96-99   DOI
53 Leibetseder V, Humpeler S, Svoboda M et al (2009) Clock genes display rhythmic expression in human hearts. Chronobiol Int 26, 621-636   DOI
54 Kotsis VT, Stabouli SV, Pitiriga V et al (2005) Impact of cardiac transplantation in 24 hours circadian blood pressure and heart rate profile. Transplant Proc 37, 2244-2246   DOI
55 Lakatta EG, Yaniv Y and Maltsev VA (2013) Minding the gaps that link intrinsic circadian clock within the heart to its intrinsic ultradian pacemaker clocks. Focus on "The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility". Am J Physiol Cell Physiol 304, C941-944   DOI
56 Schroder EA, Lefta M, Zhang X et al (2013) The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am J Physiol Cell Physiol 304, C954-965   DOI
57 Kraft IA, Alexander S, Foster D, Leachman RD and Lipscomb HS (1970) Circadian rhythms in human heart homograft. Science 169, 694-696   DOI
58 Young ME, Razeghi P, Cedars AM, Guthrie PH and Taegtmeyer H (2001) Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 89, 1199-1208   DOI
59 DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55, 455-472   DOI
60 DiFrancesco D and Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351, 145-147   DOI
61 Lyashkov AE, Vinogradova TM, Zahanich I et al (2009) Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca(2+) cycling and I(KACh). Am J Physiol Heart Circ Physiol 297, H949-959   DOI
62 Zaza A and Lombardi F (2001) Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node. Cardiovasc Res 50, 434-442   DOI
63 Vinogradova TM, Bogdanov KY and Lakatta EG (2002) beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ Res 90, 73-79   DOI
64 Yaniv Y, Ganesan A, Yang D, Ziman B, Zhang J and Lakatta EG (2014) Parallel increase in PKA activation kinetics and spontaneous beating rate in sinoatrial node cell in response to chronotropic stimuli. Heart Rhythm 11, S164   DOI
65 Zaza A, Robinson RB and DiFrancesco D (1996) Basal responses of the L-type Ca2+ and hyperpolarization- activated currents to autonomic agonists in the rabbit sino-atrial node. J Physiol 491(Pt 2), 347-355   DOI
66 Christ JE (1979) An analysis of circadian rhythmicity of heart rate in tetraplegic human subjects. Paraplegia 17, 251-258   DOI
67 Boudreau P, Yeh WH, Dumont GA and Boivin DB (2012) A circadian rhythm in heart rate variability contributes to the increased cardiac sympathovagal response to awakening in the morning. Chronobiol Int 29, 757-768   DOI
68 Prinz PN, Halter J, Benedetti C and Raskind M (1979) Circadian variation of plasma catecholamines in young and old men: relation to rapid eye movement and slow wave sleep. J Clin Endocrinol Metab 49, 300-304   DOI
69 Linsell CR, Lightman SL, Mullen PE, Brown MJ and Causon RC (1985) Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab 60, 1210-1215   DOI