• 제목/요약/키워드: health risk assessment

검색결과 1,737건 처리시간 0.024초

Proposed Data-Driven Approach for Occupational Risk Management of Aircrew Fatigue

  • Seah, Benjamin Zhi Qiang;Gan, Wee Hoe;Wong, Sheau Hwa;Lim, Mei Ann;Goh, Poh Hui;Singh, Jarnail;Koh, David Soo Quee
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.462-470
    • /
    • 2021
  • Background: Fatigue is pervasive, under-reported, and potentially deadly where flight operations are concerned. The aviation industry appears to lack a standardized, practical, and easily replicable protocol for fatigue risk assessment which can be consistently applied across operators. Aim: Our paper sought to present a framework, supported by real-world data with subjective and objective parameters, to monitor aircrew fatigue and performance, and to determine the safe crew configuration for commercial airline operations. Methods: Our protocol identified risk factors for fatigue-induced performance degradation as triggers for fatigue risk and performance assessment. Using both subjective and objective measurements of sleep, fatigue, and performance in the form of instruments such as the Karolinska Sleepiness Scale, Samn-Perelli Crew Status Check, Psychomotor Vigilance Task, sleep logs, and a wearable actigraph for sleep log correlation and sleep duration and quality charting, a workflow flagging fatigue-prone flight operations for risk mitigation was developed and trialed. Results: In an operational study aimed at occupational assessment of fatigue and performance in airline pilots on a three-men crew versus a four-men crew for a long-haul flight, we affirmed the technical feasibility of our proposed framework and approach, the validity of the battery of assessment instruments, and the meaningful interpretation of fatigue and work performance indicators to enable the formulation of safe work recommendations. Conclusion: A standardized occupational assessment protocol like ours is useful to achieve consistency and objectivity in the occupational assessment of fatigue and work performance.

Non-chemical Risk Assessment for Lifting and Low Back Pain Based on Bayesian Threshold Models

  • Pandalai, Sudha P.;Wheeler, Matthew W.;Lu, Ming-Lun
    • Safety and Health at Work
    • /
    • 제8권2호
    • /
    • pp.206-211
    • /
    • 2017
  • Background: Self-reported low back pain (LBP) has been evaluated in relation to material handling lifting tasks, but little research has focused on relating quantifiable stressors to LBP at the individual level. The National Institute for Occupational Safety and Health (NIOSH) Composite Lifting Index (CLI) has been used to quantify stressors for lifting tasks. A chemical exposure can be readily used as an exposure metric or stressor for chemical risk assessment (RA). Defining and quantifying lifting nonchemical stressors and related adverse responses is more difficult. Stressor-response models appropriate for CLI and LBP associations do not easily fit in common chemical RA modeling techniques (e.g., Benchmark Dose methods), so different approaches were tried. Methods: This work used prospective data from 138 manufacturing workers to consider the linkage of the occupational stressor of material lifting to LBP. The final model used a Bayesian random threshold approach to estimate the probability of an increase in LBP as a threshold step function. Results: Using maximal and mean CLI values, a significant increase in the probability of LBP for values above 1.5 was found. Conclusion: A risk of LBP associated with CLI values > 1.5 existed in this worker population. The relevance for other populations requires further study.

우리나라 먹는물의 크립토스포리디움에 의한 건강위해도 평가 연구 (Health Risk Assessment of Cryptosporidium in Tap Water in Korea)

  • 이목영;박상정;조은주;박수정;한선희;권오상
    • 한국환경보건학회지
    • /
    • 제39권1호
    • /
    • pp.32-42
    • /
    • 2013
  • Objectives: Cryptosporidium, a protozoan parasite, has been recognized as a frequent cause of waterborne disease due to its extremely strong resistance against chlorine disinfection. Although there has as yet been no report of a Cryptosporidium outbreak through drinking water in Korea, it is important to estimate the health risk of Cryptosporidium in water supply systems because of the various infection cases in human and domestic animals and frequent detection reports on their oocysts in water environments. Methods: This study evaluated the annual infection risk of Cryptosporidium in tap water using the quantitative microbial risk assessment technique. Exposure assessment was performed upon the results of a national survey on Cryptosporidium on the water sources of 97 large-scale water purification plants in Korea, water treatment efficacy, and daily unboiled tap water consumption. The estimates of the US Environmental Protection Agency on the mean likelihood of infection from ingesting one oocyst were applied for effect assessment. Results: Using probabilistic methods, mean annual infection risk of Cryptosporidiosis by the intake of tap water was estimated to fall within the range of $2.3{\times}10^{-4}$ to $1.0{\times}10^{-3}$ (median $5.7{\times}10^{-4}$). The risk in using river sources was predicted to be four times higher than with lake sources. With 0.5-log higher removal efficacy, the risk was estimated to be $1.8{\times}10^{-4}$, and could then be lowered by one-third. Conclusions: These estimations can be compared with acceptable risk and then used to determine the adequacy and priority of various drinking water quality strategies such as the establishment of new treatment technology.

군 건설공사 안전관리를 위한 위험성 평가 시스템 개선 방안 (Examining the Improvement of the Risk Assessment System for the Safety Management of Military Construction Projects)

  • 정현섭;방홍순;김옥규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.335-336
    • /
    • 2023
  • The military has adopted and implemented risk assessment since 2013 to reduce fatalities and accident rates at construction sites. However, risk assessment is carried out as a voluntary preventive activity and is maintained as a superficial administrative process for owners. Risk assessment must comply with the Occupational Safety and Health Act and the Enforcement Guideline of Risk Assessment. However, the scope of the assessment covers many industries, including manufacturing and distribution, making it difficult to apply to construction sites. As a result, the guidelines are interpreted and applied differently at each construction site. This study aims to improve the risk assessment system so that it is applicable to construction projects and proposes the improvement of the risk assessment system by analyzing the current status of serious accidents in military construction projects.

  • PDF

A Taxonomy of the Common Tasks and the Development of a Risk Index for Physical Load Assessment in Nursing Job

  • Ryoo, Jang Jin;Lee, Kyung-Sun;Koo, Jung-Wan
    • Safety and Health at Work
    • /
    • 제11권3호
    • /
    • pp.335-346
    • /
    • 2020
  • Background: Nursing service is a nonroutine work with an excessive physical load and diverse tasks. This study derived representative common tasks based on the frequently occurring tasks with a high physical load in the nursing workers' daily work and developed indicators to evaluate the work risk by reflecting the characteristics of nonroutine work. Methods: Common tasks were classified through the following stages: literature review, first focus group interview (FGI) with experts, first classification of common tasks, second FGI with hospital health managers, a survey of nursing service workers, and the final classification of common tasks for each task type. To develop an objective risk index for physical load assessment, we investigated the frequency and duration of the derived common tasks via survey. Results: Nursing common tasks were categorized into six task types and 56 subtasks. To evaluate the risks of various tasks in nonroutine works, three frequencies and three working time levels were defined by examining the task frequency and working hours. Exposure time was defined to reflect the characteristics of a nonroutine job. The final risk assessment was the product of the exposure time level and job intensity level. From this, four risk action levels were derived. Conclusion: This study has the advantage of solving the problem of focusing on some tasks in evaluating the physical load. It was meaningful in that a new risk assessment index based on exposure time was proposed based on the development of an evaluation scale for frequency and time by reflecting the characteristics of nonroutine work.

Application of Toxicogenomic Technology for the Improvement of Risk Assessment

  • Hwang, Myung-Sil;Yoon, Eun-Kyung;Kim, Ja-Young;Son, Bo-Kyung;Jang, Dong-Deuk;Yoo, Tae-Moo
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.260-266
    • /
    • 2008
  • Recently, there has been scientific discussion on the utility of -omics techniques such as genomics, proteomics, and metabolomics within toxicological research and mechanism-based risk assessment. Toxicogenomics is a novel approach integrating the expression analysis of genes (genomic) or proteins (proteomic) with traditional toxicological methods. Since 1999, the toxicogenomic approach has been extensively applied for regulatory purposes in order to understand the potential toxic mechanisms that result from chemical compound exposures. Therefore, this article's purpose was to consider the utility of toxicogenomic profiles for improved risk assessment, explore the current limitations in applying toxicogenomics to regulation, and finally, to rationalize possible avenues to resolve some of the major challenges. Based on many recent works, the significant impact toxicogenomic techniques would have on human health risk assessment is better identification of toxicity pathways or mode-of-actions (MOAs). In addition, the application of toxicogenomics in risk assessment and regulation has proven to be cost effective in terms of screening unknown toxicants prior to more extensive and costly experimental evaluation. However, to maximize the utility of these techniques in regulation, researchers and regulators must resolve many parallel challenges with regard to data collection, integration, and interpretation. Furthermore, standard guidance has to be prepared for researchers and assessors on the scientifically appropriate use of toxicogenomic profiles in risk assessment. The National Institute of Toxicological Research (NITR) looks forward to an ongoing role as leader in addressing the challenges associated with the scientifically sound use of toxicogenomics data in risk assessment.

신도시 내 소각로 운영에 대한 건강영향평가 사례 연구 - 중금속 흡입에 따른 인체 위해도 평가 - (A Case Study on Health Impact Assessment from Incinerator Operation in New Towns - Human Risk Assessment due to Heavy Metals Inhalation -)

  • 명노일;이영수;신대윤
    • 환경영향평가
    • /
    • 제19권3호
    • /
    • pp.271-279
    • /
    • 2010
  • We conducted a quantitative human health risk assessment with respect to inhalation of heavy metals for residents of housing developments in "new towns" where an incinerator will be operated within the area scheduled for construction thereof. To assess potential human health risk we calculated the amount of heavy metals emitted from the incinerator, and then forecasted the potential health impact on adjoining areas where new housing is to be developed (i.e. "new towns") at different altitudes by a using SCREEN-3 model. We assessed Cancer Risk (CR) caused by known carcinogens using the Inhalation Unit Risk criteria developed by the US Environmental Protection Agency. Notably, we assessed risk by determining concentrations of heavy metals on a floor by floor basis, as apartment buildings are to be constructed near the incinerator according to a pre-devised plan. Results indicated that cancer risk for most carcinogens exceeded US EPA standards for the highest locations at each collection point. This result indicates that construction of high buildings in areas adjoining incinerators is undesirable, and that measures to lower carcinogens are needed. The results of this study, which assessed health risk from exposure to heavy metals emitted from a nearby incinerator, can be useful in land use planning with respect to the location of housing developments in new towns, as well as the heights of any buildings constructed. Furthermore, the methodology deployed herein with respect to risk assessment can be helpful for policy makers and the general public in the event of conflicts regarding incinerator projects in the future. The results herein may also be of merit in determining priorities when establishing harm reduction measures for carcinogens at incinerators. However, the study does contain several limitations. The SCREEN-3 model, a kind of screening model that provides conservative results, can provide higher forecasted concentrations of air pollutants than other models. Moreover, although the incinerator in question is set to be a thermoselect type, domestic data for emissions from these incinerators is not available, and assumptions were based on a stoker type incinerator. Insufficient domestic data likewise compelled the use of data of USA, resulting in possible errors in results. Continued research will thus be required to develop systematic methodologies that address the foregoing factors and produce more reliable outcomes.

AHP 분석을 이용한 기계식 주차설비 건설 중 위험성 평가방안 연구 (Risk Assessment of Mechanical Parking Facility during Construction based on AHP Analysis)

  • 이정한;김용곤;이재원;김종훈
    • 한국안전학회지
    • /
    • 제37권5호
    • /
    • pp.33-41
    • /
    • 2022
  • As the number of automobile registrations increases yearly, parking spaces that are located in downtown areas are increasing, and mechanical parking facilities are also increasing. Therefore, there is a high risk of accidents when installing and repairing a mechanical parking facility. In the preceding six years (from 2012 to 2018), the statistics that pertain to accidental disasters indicated that a total of 137 disaster victims were generated by the construction sector, 33 accidents occurred, and 10 people died. However, only the safety management items pertaining to accidents that occur during maintenance work and the use of the installed mechanical parking facilities are being studied; furthermore, there is no ongoing research with respect to the risk management that is conducted at the construction site. In 2017, the Korea Occupational Safety and Health Agency (KOSHA) announced the "Guidelines for Safe Installation and Maintenance of Mechanical Parking Equipment"; however, it is a safety guideline that is limited to the installation of basic protective equipment and to facility installation. There is no model for mechanical parking facilities that is indicated in the "Risk Assessment Model by Construction Industry Type", which is issued by the Safety and Health Corporation and is widely utilized for risk assessment in the construction industry; moreover, elevator installation work CODE N0: 22 is the only major example of a disaster. In this study, "risk assessment through a focus group interview" was performed, and data was derived from the "risk assessment of Article 41 (2) of the Industrial Safety and Health Act", which reflects the characteristics of the construction industry based on AHP analysis. The results of this study can be utilized for the risk assessment that is conducted during the construction stage of mechanical parking facilities.

환경매체별 카드뮴의 생태위해성평가 (Ecological Risk Assessment for Cadmium in Environmental Media)

  • 이병우;이병천;윤효정;박경화;김필제
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.548-555
    • /
    • 2018
  • Objectives: We conducted ecological risk assessment for cadmium, a heavy metal and carcinogen, to identify safety standards by environmental media and to determine its impact on ecosystems by estimating and evaluating exposure levels. Methods: Species sensitivity distributions (SSDs) were generated using ECOTOX DB. A hazardous concentration of 5% (HC5) protective of most species (95%) in the environment was estimated. Using this estimate, predicted no effect concentrations (PNECs) were calculated for aquatic organisms. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. Predicted exposure concentrations (PECs) were also calculated from environmental monitoring data with hazard quotients (HQs) calculated using PNECs for environmental media. Results: Chronic toxicity data were categorized into four groups and 11 species. In species sensitivity distribution (SSD) analysis, HC5 was $0.340{\mu}g/L$. Based on this value, the PNEC value for aquatic organisms was calculated as $0.113{\mu}g/L$. PNEC values for soil and sediments using a partition coefficient were calculated as 15.02 mg/kg and 90.61 mg/kg, respectively. In an analysis of environmental monitoring data, PEC values were calculated as $0.017{\mu}g/L$ for water, 1.01 mg/kg for soil, and 0.521 mg/kg for sediment. Conclusions: HQs were 0.150, 0.067 and 0.006 for water, soil and sediment, respectively. HQs of secondary toxicity were 0.365 for birds and 0.024 for mammals. In principle, it is judged that an HQ above 1 indicates a high level of risk concern while an HQ less than 1 indicates an extremely low level of risk concern. Therefore, with HQs of cadmium in the environment being <1, its risk levels can be considered low for each media.

Banding the World Together; The Global Growth of Control Banding and Qualitative Occupational Risk Management

  • Zalk, David M.;Heussen, Ga Henri
    • Safety and Health at Work
    • /
    • 제2권4호
    • /
    • pp.375-379
    • /
    • 2011
  • Control Banding (CB) strategies to prevent work-related illness and injury for 2.5 billion workers without access to health and safety professionals has grown exponentially this last decade. CB originates from the pharmaceutical industry to control active pharmaceutical ingredients without a complete toxicological basis and therefore no occupational exposure limits. CB applications have broadened into chemicals in general - including new emerging risks like nanomaterials and recently into ergonomics and injury prevention. CB is an action-oriented qualitative risk assessment strategy offering solutions and control measures to users through "toolkits". Chemical CB toolkits are user-friendly approaches used to achieve workplace controls in the absence of firm toxicological and quantitative exposure information. The model (technical) validation of these toolkits is well described, however firm operational analyses (implementation aspects) are lacking. Consequentially, it is often not known if toolkit use leads to successful interventions at individual workplaces. This might lead to virtual safe workplaces without knowing if workers are truly protected. Upcoming international strategies from the World Health Organization Collaborating Centers request assistance in developing and evaluating action-oriented procedures for workplace risk assessment and control. It is expected that to fulfill this strategy's goals, CB approaches will continue its important growth in protecting workers.