• Title/Summary/Keyword: headspace gas chromatography

Search Result 132, Processing Time 0.022 seconds

Determination of Aroma Components in Pinus densiflora (Pine Needles) Studied by Using Different Extraction Methods (추출방법에 따른 솔잎의 휘발성 성분 조성 비교)

  • Lee Jae-Gon;Lee Chang-Gook;Baek Shin;Kwon Young-Ju;Jang Hee-Jin;Kwag Jae-Jin;Rhee Moon-Soo;Lee Gae-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • The efficiency of six different extraction methods for the analysis of aroma components from pine needle(P. densiflora) was compared by gas chromatography-mass selective detector(GC-MSD). The six methods were dynamic headspace(DHS), reduced pressure headspace(RPHS), solid-phase microextraction(SPME), simultaneous distillation-extraction(SDE), supercritical fluid extraction(SFE) and pyrolysis distillation extraction(PDE). A total of 65 compounds were identified by using the six different extraction methods. These compounds are classified into six categories in terms of chemical functionality: 25 hydrocarbons, 16 alcohols, 9 carbonyls, 6 esters, 7 acids, and 2 ethers. The aroma compounds having low boiling point were more abundant in DHS, RPHS, and SPME extracts. On the other hand, the aroma compounds having high boiling point were more abundants in SDE, SFE and PDE extracts. The acid compounds were extracted by heat-based extraction methods such as SDE, SFE, PDE, but not by DHS, RPHS and SPME, which used neither solvent nor heat. The oxygenated terpens, hexanal, hexanol, and hexadienal were more abundant in DHS and RPHS extracts, compared with the other methods.

Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases

  • Abdullahi, Adamu;Ahmad, Khairulmazmi;Ismail, Intan Safinar;Asib, Norhayu;Haruna, Osumanu;Abubakar, Abubakar Ismaila;Siddiqui, Yasmeen;Ismail, Mohd Razi
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.515-535
    • /
    • 2020
  • Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, β-bisabolene, and β-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.

Simultaneous Analysis of 17 Organophosphorous Pesticides in Blood by Automated Head Space-SPME GC/MS (HS-SPME-GC/MS에 의한 혈액중 17종 유기인계 농약의 동시분석법)

  • Rhee, Jong-Sook;Jung, Jin-Mi;Lee, Han-Sun;Yeom, Hye-Sun;Lee, Sang-Ki;Park, Yoo-Sin;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.429-440
    • /
    • 2010
  • HS-SPME-GC/MS was studied and optimized for the determination of 17 orgarnophosphorous pesiticides (OPPs: chlorpyrifos, chlorpyrifos-methyl, demeton-s-methyl, diazinon, dimethoate, EPN, fenitrothion, fenthion, malathion, methidathion, monocrotophos, parathion, phenthoate, phosphamidon, sulfotep, terbufos, triazophos) in blood. Optimum SPME parameters were selected: choice of SPME fiber (85 ${\mu}m$ polyacrylate), pH effect (0.5 N HCl), salt effect ($Na_2SO_4$, 0.2 g; 20%), headspace incubation temperature ($80^{\circ}C$), headspace incubation time (1 min), headspace adsorption time (30 min) and GC desorption time (2 min). These parameters were optimized using HS-SPME autosampler coupled with gas chromatography-mass spectrometry (GC-MS). Method validation was carried out in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and recovery in blood. The assay was linear over 0.5~5.0 mg/l ($r^2$=0.955~1.000). Limit of detection (LOD) and limit of quantitation (LOQ) in blood were determined 0.03~0.3 mg/l (S/N=3) and 0.1~1.1 mg/l (S/N=10), respectively. Relative recovery with 0.5, 1 and 5 mg/l (in blood) were 90.8%, 98.5% and 94.1%, respectively. This method will be applied to the determination of the orgarnophosphorous pesticides in postmortem blood. The proposed protocol can be an attractive alternative to be used in routine toxicological analysis.

Analysis of tert-Butanol, Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene and Xylene in Ground Water by Headspace Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang;Kim, Tae-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3049-3052
    • /
    • 2009
  • Methyl tert-butyl ether (MTBE) is added to gasoline to enhance the octane number of gasoline, tert-butyl alcohol (TBA) is major degradation intermediate of MTBE in environment, and benzene, toluene, ethyl benzene and xylene (BTEX) are also major constituents of gasoline. In this study, a simplified headspace analysis method was adapted for simultaneous determination of MTBE, TBA and BTEX in ground water samples. The sample 5.0 mL and 2 g NaCl were placed in a 10 mL vial and the solution was spiked with fluorobenzene as an internal standard and sealed with a cap. The vial was placed in a heating block at 85 $^{\circ}C$ for 30 min. The detection limits of the assay were 0.01 ${\mu}$g/L for MTBE and BTEX, and 0.02 ${\mu}$g/L for TBA. The method was used to analyze 110 ground water samples from various regions in Korea, and to survey the their background concentration in ground water in Korea. The samples revealed MTBE concentrations in the range of 0.01 - 0.45 ${\mu}$g/L (detection frequency of 57.3%), TBA concentrations in the range of 0.02 - 0.08 ${\mu}$g/L (detection frequency of 5.5%), and total BTEX concentrations in the range of 0.01 - 2.09 ${\mu}$g/L (detection frequency of 87.3%). The developed method may be used when simultaneously determining the amount of MTBE, TBA and BTEX in water.

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

Analysis of Volatile Flavor Compounds in Milk Using Electronic Nose System (전자코 시스템을 이용한 우유의 품질에 따른 휘발성 향기성분 분석)

  • Kang, Nae Kyung;Jun, Tae-Sun;Yang, Yoon Seok;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.320-325
    • /
    • 2014
  • Volatile flavor compounds from milk were analyzed and identified by using the analysis methods of headspace solid phase microextraction gas chromatography/mass spectrometry (HSPME-GC/MS) and electronic nose (E-Nose) system. About 30 volatile compounds were identified by HSPME-GC/MS for the fresh and off-flavor milk samples. Also, the correlation between rancidity and ageing days of milk was obtained by the aid of principal component analysis algorithm. It shows that the E-Nose system can identify the various types of milk flavor. These results imply that the analysis method based on the E-nose system can apply to the quality control of milk flavor and the rancidity.

The Evaluation of Solid-Phase Microextraction(SPME) Techniques for Analyzing Mixed Fuel Oxygenates and Products

  • 이재선;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.458-461
    • /
    • 2003
  • Solid-phase microextraction (SPME) and gas chromatography/headspace techniques(HS) and flame ionization detection (GC/FID) have been combined for determination of very polar compounds in water, including the widely used gasoline oxygenates and by-products. A relatively simple extraction method using a CAR/PDMS(75${\mu}{\textrm}{m}$) SPME fiber was optimized for the routine analysis of gasoline oxygenates and by-products in groundwater and reagent water. A sodium chloride concentration of 25%(w/w) combined with an extraction time of 20 min provided the greatest sensitivity while maintaining analytical efficiency Replicate analyses in fortified reagent and groundwater spiked with microgram per liter concentrations of gasoline oxygenates and by-products indicate quantitative and reproducible recovery of these and related oxygenate compounds. Method dynamic range was 50$\mu\textrm{g}$ L-1 to 3000$\mu\textrm{g}$ L-1 for gasoline oxygenates and by-products.

  • PDF

고체상 미량분석법(SPME)을 이용한 GC/FID에서의 BTEX 및 TCE 동시 분석

  • 이재선;장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.405-408
    • /
    • 2003
  • The soild phase microextraction(SPME)fiber which contains 100${\mu}{\textrm}{m}$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/flame ionization detector(GC/FID). The optimu condition of SPME fiber is determined that the analytes were extracted for 40min from extracts by using PDAfS100${\mu}{\textrm}{m}$ fiber. This new method could have wide application for the analysis of VOCs in aqueous solution.

  • PDF

Determination of geosmin and 2-MIB in Nakdong River using headspace solid phase microextraction and GC-MS (HS-SPME-GC/MS를 이용한 낙동강 수계 하천수 중 조류기원성 냄새물질 분석)

  • Lee, Injung;Lee, Kyoung-Lak;Lim, Tae-Hyo;Park, Jeong-Ja;Cheon, Seuk
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • Geosmin and 2-methylisoborneol (2-MIB) are volatile organic compounds responsible for the majority of unpleasant taste and odor events in drinking water. Geosmin and 2-MIB are byproducts of blue-green algae (cyanobacteria) with musty and earthy odors. These compounds have odor threshold concentration at ng/L levels. It is needed to develop a sensitive method for determination of geosmin and 2-MIB to control the quality of drinking water. In this study, geosmin and 2-MIB in water samples were determined by gas chromatography-mass spectrometry (GC-MS) with headspace-solid phase microextraction (HS-SMPE). The detection limits of this method were 1.072 ng/L and 1.021 ng/L for geosmin and 2-MIB, respectively. Good accuracy and precision was also obtained by this method. Concentrations of the two compounds were measured in raw waters from Nakdong River in the cyanobacterial blooming season. Water bloom formed by cyanobacteria has been occurred currently in Nakdong River. It is needed to investigate the concentrations of geosmin and 2-MIB to control the quality of drinking water from Nakdong River. Both geosmin and 2-MIB were detected in raw waters from Nakdong River at concentrations ranging from 4 to 24 ng/L and 6 to 16 ng/L, respectively.

Isothermal Vapor-Liquid Equilibria at 333.15 K and Excess Molar Volumes and Refractive Indices at 303.15 K for the Mixtures of Propyl vinyl ether + Ethanol + Benzene (Propyl vinyl ether+Ethanol+Benzene 혼합계의 333.15 K에서의 등온 기액평형과 303.15 K에서의 과잉물성 및 굴절율편차)

  • Hwang, In-Chan;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • Alkyl vinyl ethers such as methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether and isobutyl vinyl ether are usually used as industrial solvents and chemical intermediates in the chemical or pharmaceutical industry. Recently, they are popularly used as raw materials for polymer electrolyte membrane fuel cells and as cellulose dyeing assistants. However, very few investigations about process design and operation data were reported for alkyl vinyl ether compounds and there are no data for propyl vinyl ether(PVE) systems as far as we know. In this work, the isothermal VLE data are reported at 333.15 K for the ternary systems of {PVE + ethanol + benzene} by using headspace gas chromatography(HSGC) and these VLE data were correlated using Wilson, NRTL and UNIQUAC equations. The excess volumes($V^E$) and deviations in molar refractivity(${\Delta}R$) data are also reported for the sub binary systems {PVE + ethanol}, {ethanol + benzene} and {PVE + benzene} at 303.15 K. These data were correlated with Redlich-Kister equation. In addition, isoclines of $V^E$ and DR for ternary system {PVE + ethanol + benzene} were also calculated from Radojkovi equation.