• Title/Summary/Keyword: head blight

Search Result 69, Processing Time 0.176 seconds

Isolation and Characterization of Antifungal Metabolites from Pterocarpus santalinus against Fusarium graminearum Causing Fusarium Head Blight on Wheat (자단향으로부터 밀 붉은곰팡이병균 Fusarium graminearum에 대한 항진균활성 물질의 분리 및 특성 규명)

  • Kim, Ji-In;Ha, Areum;Park, Ae Ran;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.268-277
    • /
    • 2017
  • Fusarium head bight (FHB) is a devastating disease on major cereal crops worldwide which causes primarily by Fusarium graminearum. Synthetic fungicides are generally used in conventional agriculture to control FHB. Their prolonged usage has led to environmental issues and human health problems. This has prompted interest in developing environmentally friendly biofungicides, including botanical fungicides. In this study, a total 100 plant extracts were tested for antifungal activity against F. graminearum. The crude extract of Pterocarpus santalinus heartwood showed the strongest antifungal activity and contained two antifungal metabolites which were identified as ${\alpha}$-cedrol and widdrol by GC-MS analysis. ${\alpha}$-Cedrol and widdrol isolated from P. santalinus heartwood extract had 31.25 mg/l and 125 mg/l of minimal inhibitory concentration against the spore germination of F. graminearum, and also showed broad spectrum antifungal activities against various plant pathogens. In addition, the wettable powder type formulation of heartwood extract of P. santalinus decreased FHB incidence in dose-dependent manner and suppressed the development of FHB with control values of 87.2% at 250-fold dilution, similar to that of chemical fungicide (92.6% at 2,000-fold dilution). This study suggests that the heartwood extract of P. santalinus could be used as an effective biofungicide for the control of FHB.

Difference in Chemotype Composition of Fusarium graminearum Populations Isolated from Durum Wheat in Adjacent Areas Separated by the Apennines in Northern-Central Italy

  • Prodi, A.;Purahong, W.;Tonti, S.;Salomoni, D.;Nipoti, P.;Covarelli, L.;Pisi, A.
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.354-359
    • /
    • 2011
  • Chemotype composition of Fusarium graminearum strains, isolated from durum wheat kernels from naturally FHB infected fields in Northern and Central Italy, was investigated by multiplex PCR. The different climatic and environmental conditions of the two examined areas separated by the Apennines affected the composition of chemotypes. 15Ac-DON chemotype was predominant in both the sub areas. Nivalneol chemotype was more frequent in the warmer sub area.

Natural Occurrence of Fusarium Head Blight and Its Mycotoxins in 2010-harvested Barley and Wheat Grains in Korea (2010년산 맥류의 붉은곰팡이병 발생 및 Fusarium 곰팡이독소 자연발생)

  • Ryu, Jae-Gee;Lee, Soo-Hyung;Son, Seung-Wan;Lee, Seung-Ho;Nam, Young-Ju;Kim, Mi-Ja;Lee, Theresa;Yun, Jong-Chul
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Fusarium species are worldwide causal agents of Fusarium head blight (FHB) in cereals such as barley and wheat. Their toxigenic potential is a health risk for both humans and animals. To survey the natural occurrence of FHB and mycotoxins produced by Fusarium, total 126 barley or wheat grains grown in 2009-2010 season in Korea were collected. The incidence of FHB was 30.7% in silage barley, 26.9% in wheat, 20.7% in naked barley, 19.4% in malting barley, 16.4% in unhulled barley. Overall FHB incidence of barley and wheat in 2010 was 23.0% and 10% higher than that of 2009. The incidences and level of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) were 34%, 0.89 mg/kg, 84.9%, 1.86 mg/kg, and 10.3%, 0.06 mg/kg respectively. The both levels and incidences of NIV were found to be highest in barley, whereas the level of DON was found to be highest in wheat. Incidences of DON and NIV and the level of NIV in the samples from southern regions of Korea were higher than those from central region, whereas the level of DON from central region was higher than that from southern regions. This is the first paper demonstrating regional difference in natural occurrence of DON and NIV in wheat and barley.

Biological Control of Fusarium Head Blight on Wheat by Polyacetylenes Derived from Cirsium japonicum Roots (대계근에서 분리한 Polyacetylene계 화합물을 이용한 밀 이삭마름병 방제)

  • Kim, Ji-In;Kim, Kihyun;Park, Ae Ran;Choi, Gyung Ja;Park, Hae Woong;Kim, In Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.145-151
    • /
    • 2016
  • Chemical fungicides have reduced Fusarium head blight (FHB) severity. However, by the effects of fungicide residues, they can only be used up to 30 days before time of harvest. Therefore, the development of new biofungicides that are applicable until harvest is required. In order to select plant extracts having antifungal activity against Fusarium graminearum for the control of FHB, we investigated the inhibitory effects of 225 medicinal plant extracts on spore germination of F. graminearum. Of these plant extracts, the methanol extract of Cirsium japonicum (CJ) roots showed the strongest antifungal activity. Through solvent partitioning, repeated column chromatography, and spore germination bioassay, two chemicals were purified and then their chemical structures were identified as ciryneol C (CC) and 1-heptadecene-11,13-diyne-8,9,10-triol (HD-ol) which are polyacetylene substances. Two active compounds effectively inhibited the germination of F. graminearum macroconidia; HD-ol ($IC_{50}$ of $3.17{\mu}g/ml$) showed stronger spore germination inhibitory activity than that of CC ($IC_{50}$ of $28.14{\mu}g/ml$). In addition, the wettable powder type formulation of ethyl acetate extract of CJ roots suppressed the development of FHB in dose-dependent manner, with control values of 78.92% and 31.56% at 250- and 500-fold dilutions, respectively. Combining these findings suggest that the crude extract of CJ roots containing polyacetylene compounds could be used as botanical fungicide for the control of FHB.

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.

Application Effects of Bacterial Inoculants Producing Chitinase on Corn Silage

  • Young Ho Joo;Seung Min Jeong;Jiyoon Kim;Myeong Ji Seo;Chang Hyun Baeg;Seong Shin Lee;Byeong Sam Kang;Ye Yeong Lee;Jin Woo Kim;Sam-Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.148-155
    • /
    • 2023
  • This study was aimed to isolate bacterial inoculants producing chitinase and evaluate their application effects on corn silage. Four corn silages were collected from four beef cattle farms to serve as the sources of bacterial inoculants. All isolates were tested against Fusarium graminearum head blight fungus MHGNU F132 to confirm their antifungal effects. The enzyme activities (carboxylesterase and chitinase) were also measured to isolate the bacterial inoculant. Based on the activities of anti-head blight fungus, carboxylesterase, and chitinase, L. buchneri L11-1 and L. paracasei L9-3 were subjected to silage production. Corn forage (cv. Gwangpyeongok) was ensiled into a 10 L mini silo (5 kg) in quadruplication for 90 days. A 2 × 2 factorial design consists of F. graminearum contamination at 1.0104 cfu/g (UCT (no contamination) vs. CT (contamination)) and inoculant application at 2.1 × 105 cfu/g (CON (no inoculant) vs. INO (inoculant)) used in this study. After 90 days of ensiling, the contents of CP, NDF, and ADF increased (p<0.05) by F. graminearum contamination, while IVDMD, acetate, and aerobic stability decreased (p<0.05). Meanwhile, aerobic stability decreased (p<0.05) by inoculant application. There were interaction effects (p<0.05) on IVNDFD, NH3-N, LAB, and yeast, which were highest in UCT-INO, UCT-CON, CT-INO, and CT-CON & INO, respectively. In conclusion, this study found that mold contamination could negatively impact silage quality, but isolated inoculants had limited effects on IVNDFD and yeast.

Agricultural Characteristics of an Early-maturing, Multiple Resistant and High Quality Rice variety Cheolweon109

  • Yong-Jae Won;Eok-Keun Ahn;Woong-Jo Hyun;Kuk-Hyun Jeong;Yoon-Sung Lee;Jeong-Joo Kim;Ji-Eun Kwak;Bon-Il Ku;Won-Young Choi;Hyang-Mi Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.266-266
    • /
    • 2022
  • The outbreaks of blast, bacterial blight and viral diseases have been increasing in early maturing rice cultivating areas in the central northern regions, recently. As the occurrence of sudden insects pests and disasters increases due to global climate warming, it is urgent to develop a variety of disaster-tolerant, high-quality varieties in response. This study was carried out to elucidate the characteristics of early-maturing, high-quality and multiple disease resistant rice variety, Cheolweon109 that was adapted to cultivation in the mid-mountainous regions of the central northern regions. Cheolweon109 was derived from a cross between Suweon546, medium maturing variety, and Sangju44 which is early maturing and resistant to blast, bacterial blight and rice stripe virus. The heading date of Cheolweon109 was July 30, 3 days later than Odae. The culm length of Cheolweon109 was 79 cm, which was about 5 cm taller than Odae, and the ripening ratio was 85.1%, which was 10% higher than that of Odae. This variety had 5.54 MT/ha of milled rice productivity, which was 99% of the Odae. Although Cheolweon109 was tall, it was strong against lodging. It was strong against bacterial blight (K1, K2, K3 race), rice stripe virus, and the pre-harvest sprouting which rate was 2.4%. The appearance of the grains of rice was clean, the glossiness was 70.6, and the head rice ratio was 95.3% high. Because Cheolweon109 had superior disease resistance, disaster resistance, and high quality than Odae, it was expected that can be used to expand the diversity of early maturing and high-quality rice varieties in central northern regions.

  • PDF

Insertional mutagenesis of fusarium graminearum for characterization of genes involved in disease development and mycotoxin production

  • Han, Yon-Kyoung;Lee, Hyo-Jin;Yun, Sung-Hwan;Lee, Yin-Won
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.85.2-86
    • /
    • 2003
  • Fusarium graminearum is an important pathogen of cereal crops in many areas of the world causing head blight and ear rot of small grains. In addition to serious economic losses, this fungus produces mycotoxins, such as trichothecenes and zearalenone on diseased crops and has been a potential threat to human and animal health. To massively identify pathogenesis-related genes from F. graminearum, two representative strains (SCKO4 from rice and Z03643 from wheat) were mutagenized using restriction enzyme-mediated integration (REMI). In total, 20,DOD REMI transformants have been collected from the two strains. So far, 63 mutants for several traits involved in disease development such as virulence, mycotoxin production, and sporulation have been selected from 3,000 REMI transformants. Now, selected mutants of interest have being genetically analyzed using a newly developed outcross method (See Jungkwan Lee et al poster). In addition, cloning and characterization of genomic DNA regions flanking the insertional site in the genome of the mutants are in progress.

  • PDF

Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum

  • Lee, Jung-Kwan;Son, Ho-Kyoung;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.349-353
    • /
    • 2011
  • The ascomycete fungus Fusarium graminearum is an important plant pathogen responsible for Fusarium head blight in small grains and ear rot on maize. This fungus also produces the estrogenic metabolite, zearalenone (ZEA) that causes estrogenic disorders in humans and animals. Previously, we developed a conditional gene expression system for this fungus using a ZEA-inducible promoter (Pzear). In the present study, four other estrogenic compounds, including ${\beta}$-estradiol, estriol, estrone, and secoisolariciresinol, were screened as possible substitutes for ZEA in this system. Among them, ${\beta}$-estradiol was able to successfully induce the expression of a gene controlled by Pzear, while estrone was only able to partially induce its expression but the other two compounds were not effective. In combination, these results demonstrate that ${\beta}$-estradiol can replace ZEA in this conditional gene expression system, thereby eliminating the need to use the more expensive reagent, ZEA, and facilitating high-throughput functional analyses of F. graminearum in future studies.