DOI QR코드

DOI QR Code

Difference in Chemotype Composition of Fusarium graminearum Populations Isolated from Durum Wheat in Adjacent Areas Separated by the Apennines in Northern-Central Italy

  • Prodi, A. (Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum Universita di Bologna) ;
  • Purahong, W. (Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum Universita di Bologna) ;
  • Tonti, S. (Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum Universita di Bologna) ;
  • Salomoni, D. (Dipartimento di Protezione e Valorizzazione Agroalimentare) ;
  • Nipoti, P. (Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum Universita di Bologna) ;
  • Covarelli, L. (Dipartimento di Scienze Agrarie e Ambientali, Universita degli Studi di Perugia) ;
  • Pisi, A. (Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum Universita di Bologna)
  • Received : 2011.06.24
  • Accepted : 2011.10.16
  • Published : 2011.12.01

Abstract

Chemotype composition of Fusarium graminearum strains, isolated from durum wheat kernels from naturally FHB infected fields in Northern and Central Italy, was investigated by multiplex PCR. The different climatic and environmental conditions of the two examined areas separated by the Apennines affected the composition of chemotypes. 15Ac-DON chemotype was predominant in both the sub areas. Nivalneol chemotype was more frequent in the warmer sub area.

Keywords

References

  1. Boutigny, A. L., Ward, T. J., Van Coller, G. J., Flett, B., Lamprecht, S. C., O'Donnell, K. and Viljoen, A. 2011. Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preferences. Fungal Genet. Biol. 48: 914-920. https://doi.org/10.1016/j.fgb.2011.05.005
  2. Brandfass, C. and Karlovsky, P. 2006. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis. BMC Microbiol. 6: 4. https://doi.org/10.1186/1471-2180-6-4
  3. Burlakoti, R. R., Estrada, Jr. R., Rivera, V. V., Boddeda, A., Secor, G. A. and Adhikari, T. B. 2007. Real-time PCR quantification and mycotoxin production of Fusarium graminearum in wheat inoculated with isolates collected from potato, sugar beet and wheat. Phytopathology 97:835-841. https://doi.org/10.1094/PHYTO-97-7-0835
  4. Gale, L. R., Ward, T. J., Balmas, V. and Kistler, H. C. 2007. Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology 97:1434-1439. https://doi.org/10.1094/PHYTO-97-11-1434
  5. Goswami, R. S. and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5: 515-525. https://doi.org/10.1111/j.1364-3703.2004.00252.x
  6. Guo, X. W., Fernando, W. G. D. and Seow-Brock, H. Y. 2008. Population structure, chemotype diversity, and potential chemotype shifting of Fusarium graminearum in wheat fields of Manitoba. Plant Dis. 92:756-762. https://doi.org/10.1094/PDIS-92-5-0756
  7. Jennings, P., Coates, M. E., Turner, J. A., Chandler, E. A. and Nicholson, P. 2004. Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol. 53:182-190. https://doi.org/10.1111/j.0032-0862.2004.00985.x
  8. Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:2389-3295.
  9. Lemmens, M., Buerstmayr, H., Krska, R., Schuhmacher, R., Grausgruber, H. and Ruckenbauer, P. 2004. The effect of inoculation treatment and long-term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. Eur. J. Plant Pathol. 110:299-308. https://doi.org/10.1023/B:EJPP.0000019801.89902.2a
  10. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing Professional, Ames, IA, USA.
  11. Liggitt, J., Jenkinson, P. and Parry, D. W. 1997. The role of saprophytic microflora in the development of Fusarium ear blight of winter wheat by Fusarium culmorum. Crop Protect. 16: 679-685. https://doi.org/10.1016/S0261-2194(97)00039-2
  12. Minervini, F., Fornelli, F. and Flynn, K. M. 2004. Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin B1 in a human erythroleukemia cell line. Toxicol. In vitro 18:21-28. https://doi.org/10.1016/S0887-2333(03)00130-9
  13. Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W. and Joyce, D. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 53:17-37. https://doi.org/10.1006/pmpp.1998.0170
  14. Pancaldi, D., Tonti, S., Prodi, A., Salomoni, D., Dal Pra, M., Nipoti, P., Alberti, I. and Pisi, A. 2010. Survey of the main causal agents of fusarium head blight of durum wheat around Bologna, northern Italy. Phytopathol. Medit. 49:258-266.
  15. Parry, D. W., Jekinson, P. and Mcleod, L. 1995. Fusarium ear blight (scab) in small grain cereals a review. Plant Pathol. 44: 207-238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
  16. Pasquali, M., Giraud, F., Brochot, C., Cocco, E., Hoffmann, L. and Bohn, T. 2009. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int. J. Food Microbiol. 137:246-253.
  17. Peel, M. C., Finlayson, B. L. and McMahon, T. A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11:1633-1644. https://doi.org/10.5194/hess-11-1633-2007
  18. Placinta, C. M., D'Mello, J. P. F., MacDonald, A. M. C. 1999. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 78:21-37. https://doi.org/10.1016/S0377-8401(98)00278-8
  19. Poapolathep, A., Ohtsuka, R., Kiatipattanasakul, W., Ishigami, N., Nakayama, H. and Doi, K. 2002. Nivalenol-induced apoptosis in thymus, spleen and Peyer's patches of mice. Exp. Toxicol. Pathol. 53:441-446. https://doi.org/10.1078/0940-2993-00211
  20. Prodi, A., Nipoti, P., Bertacchini, E., Tonti, S., Alberti, I., Dal Prà, M., Montanari, M., Pancaldi, D., Covarelli, L., Infantino, A., Santori, A. and Balmas, V. 2009a. Presence of deoxynivalenol and nivalenol chemotypes of Fusarium graminearum isolated from durum wheat in Italy. J. Plant Pathol. 91 (4, Supplement): S4.81.
  21. Prodi, A., Tonti, S., Nipoti, P., Pancaldi, D. and Pisi, A. 2009b. Identification of deoxynivalenol and nivalenol producing chemotypes of Fusarium graminearum isolates from durum wheat in a restricted area of Northen Italy. J. Plant Pathol. 91:611-615.
  22. Shifrin, V. I. and Anderson, P. 1999. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun Nterminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem. 274:13985-13992. https://doi.org/10.1074/jbc.274.20.13985
  23. Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Toth, B., Varga, J. and O'Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191-1204. https://doi.org/10.1016/j.fgb.2007.03.001
  24. Suarez, M. B., Walsh, K., Boonham, N., O'Neill, T., Pearson, S. and Barker, I. 2005. Development of real-time PCR ($Taq-Man{\circledR}$) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol. Biochem. 43:890-899. https://doi.org/10.1016/j.plaphy.2005.07.003
  25. Visconti, A., Solfrizzo, M., Avantaggiato, G. and De Girolamo, A. 2000. Strategies for detoxification of Fusarium mycotoxins and assessing in vitro the relevant effectiveness. In: Proceedings of Brighton Crop Protection Conference - Pests and Diseases, pp 721-728.
  26. Visconti, A., Haidukowski, E. M., Pascale, M. and Silvestri, M. 2004. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicol. Lett. 153:181-189. https://doi.org/10.1016/j.toxlet.2004.04.032
  27. Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. and O'Donnell, K. 2002. Ancestral polymorphism and adaptative evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 99:9278-283. https://doi.org/10.1073/pnas.142307199
  28. Ward, T. J., Clear, R. M., Rooney, A. P., O'Donnell, K., Gaba, D., Patrick, S., Starkey, D. E., Gilbert, J., Geiser, D. M. and Nowicki, T. W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45:473-484. https://doi.org/10.1016/j.fgb.2007.10.003
  29. Yazar, S. and Omurtag, G. 2008. Fumonisins, trichothecenes and zearalenone in cereals. Int. J. Mol. Sci. 9:2062-2090. https://doi.org/10.3390/ijms9112062
  30. Zhang, J. B., Li, H. P., Dang, F. J., Qu, B., Xu, Y. B., Zhao, C. S. and Liao, Y. C. 2007. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol. Res. 111:967-975. https://doi.org/10.1016/j.mycres.2007.06.008

Cited by

  1. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy vol.9, pp.4, 2017, https://doi.org/10.3390/toxins9040120
  2. Biogeography ofFusarium graminearumspecies complex and chemotypes: a review vol.32, pp.4, 2015, https://doi.org/10.1080/19440049.2014.984244
  3. Characterization of Fusarium Strains Recovered From Wheat With Symptoms of Head Blight in Kentucky vol.99, pp.11, 2015, https://doi.org/10.1094/PDIS-06-14-0610-RE
  4. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria vol.189, 2014, https://doi.org/10.1016/j.ijfoodmicro.2014.08.011
  5. Causal agents of Fusarium head blight of durum wheat ( Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites vol.70, 2018, https://doi.org/10.1016/j.fm.2017.08.016
  6. Identification, virulence factors characterization, pathogenicity and aggressiveness analysis of Fusarium spp., causing wheat head blight in Iran vol.147, pp.4, 2017, https://doi.org/10.1007/s10658-016-1059-7
  7. Aggressiveness of different Fusarium graminearum chemotypes within a population from Northern-Central Italy vol.55, pp.1, 2014, https://doi.org/10.1016/j.myc.2013.05.007
  8. Fusariumspecies, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy vol.95, pp.3, 2015, https://doi.org/10.1002/jsfa.6772
  9. Study of Fungal Colonization of Wheat Kernels in Syria with a Focus on Fusarium Species vol.14, pp.3, 2013, https://doi.org/10.3390/ijms14035938
  10. Diversity of the Fusarium graminearum species complex on French cereals vol.138, pp.1, 2014, https://doi.org/10.1007/s10658-013-0312-6
  11. Trichothecene Genotypes of Fusarium graminearum Populations Isolated from Winter Wheat Crops in Serbia vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110460
  12. Species Composition and Trichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland vol.10, pp.8, 2018, https://doi.org/10.3390/toxins10080325