• Title/Summary/Keyword: harmonic section

Search Result 72, Processing Time 0.031 seconds

Analytical and experimental investigation of stepped piezoelectric energy harvester

  • Deepesh, Upadrashta;Li, Xiangyang;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.681-692
    • /
    • 2020
  • Conventional Piezoelectric Energy Harvesters (CPEH) have been extensively studied for maximizing their electrical output through material selection, geometric and structural optimization, and adoption of efficient interface circuits. In this paper, the performance of Stepped Piezoelectric Energy Harvester (SPEH) under harmonic base excitation is studied analytically, numerically and experimentally. The motivation is to compare the energy harvesting performance of CPEH and SPEHs with the same characteristics (resonant frequency). The results of this study challenge the notion of achieving higher voltage and power output through incorporation of geometric discontinuities such as step sections in the harvester beams. A CPEH consists of substrate material with a patch of piezoelectric material bonded over it and a tip mass at the free end to tune the resonant frequency. A SPEH is designed by introducing a step section near the root of substrate beam to induce higher dynamic strain for maximizing the electrical output. The incorporation of step section reduces the stiffness and consequently, a lower tip mass is used with SPEH to match the resonant frequency to that of CPEH. Moreover, the electromechanical coupling coefficient, forcing function and damping are significantly influenced because of the inclusion of step section, which consequently affects harvester's output. Three different configurations of SPEHs characterized by the same resonant frequency as that of CPEH are designed and analyzed using linear electromechanical model and their performances are compared. The variation of strain on the harvester beams is obtained using finite element analysis. The prototypes of CPEH and SPEHs are fabricated and experimentally tested. It is shown that the power output from SPEHs is lower than the CPEH. When the prototypes with resonant frequencies in the range of 56-56.5 Hz are tested at 1 m/s2, three SPEHs generate power output of 482 μW, 424 μW and 228 μW when compared with 674 μW from CPEH. It is concluded that the advantage of increasing dynamic strain using step section is negated by increase in damping and decrease in forcing function. However, SPEHs show slightly better performance in terms of specific power and thus making them suitable for practical scenarios where the ratio of power to system mass is critical.

Vibration mitigation of guyed masts via tuned pendulum dampers

  • Lacarbonara, Walter;Ballerini, Stefano
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.517-529
    • /
    • 2009
  • A passive vibration mitigation architecture is proposed to damp transverse vibrations of guyed masts. The scheme is based on a number of pendula attached to the mast and tuned to the vibration modes to be controlled. This scheme differs from the well-known autoparametric pendulum absorber system. The equations of motion of the guyed mast with an arbitrary number of pendula are obtained. The leading bending behaviour of a typical truss mast is described by an equivalent beam model whereas the guys are conveniently modeled as equivalent transverse springs whose stiffness comprises the elastic and geometric stiffness. By assuming a mast with an inertially and elastically isotropic cross-section, a planar model of the guyed mast is investigated. The linearization of the equations of motion of the mast subject to a harmonic distributed force leads to the transfer functions of the structure without the dampers and with the dampers. The transfer functions allow to investigate the mitigation effects of the pendula. By employing one pendulum only, tuned to the frequency of the lowest mode, the effectiveness of the passive vibration potential in reducing the motion and acceleration of the top section of the mast is demonstrated.

Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test (진동대실험에 의한 동조액체기둥감쇠기의 동적특성)

  • Min, Kyung-Won;Park, Eun-Churn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.620-627
    • /
    • 2009
  • Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.

A 2-GHz 8-bit Successive Approximation Digital-to-Phase Converter (2 GHz 8 비트 축차 비교 디지털-위상 변환기)

  • Shim, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.240-245
    • /
    • 2019
  • Phase interpolation is widely adopted in frequency synthesizers and clock-and-data recovery systems to produce an intermediate phase from two existing phases. The intermediate phase is typically generated by combining two input phases with different weights. Unfortunately, this results in non-uniform phase steps. Alternatively, the intermediate phase can be generated by successive approximation, where the interpolated phase at each approximation stage is obtained using the same weight for the two intermediate phases. As a proof of concept, this study presents a 2-GHz 8-bit successive approximation digital-to-phase converter that is designed using 65-nm CMOS technology. The converter receives an 8-phase clock signal as input, and the most significant bit (MSB) section selects four phases to create two sinusoidal waveforms using a harmonic rejection filter. The remaining least significant bit (LSB) section applies the successive approximation to generate the required intermediate phase. Monte-Carlo simulations show that the proposed converter exhibits 0.46-LSB integral nonlinearity and 0.31-LSB differential nonlinearity with a power consumption of 3.12 mW from a 1.2-V supply voltage.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

A Study on the Development of Harmonic Limit Device for Stabilizing Main Circuit Equipment of Train (열차운행 안정화를 위한 주회로 기기의 고조파 제한장치 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.853-861
    • /
    • 2018
  • This paper proposes the application of harmonic constraints to address the problems caused by abnormal voltage increases when electric railway vehicles are running. The AC line that supplies the train with power during operation is used to provide electricity of 25kV/60 Hz, but gradually the size and frequency of harmonics involved in the line are varied with the technological evolution of the railroad vehicle electrical equipment. An increase in heat losses due to the failure of the instrument transformer (PT), the main circuit device, which is a serious problem with the recent train safety operation, or to the main displacement voltage. When high frequency components are introduced through low frequency Transformers of the main circuit device, the high intensity of the components is caused by the high intensity of the core and the current flow of the parasitic core is increased, thus generating heat. To solve this problem, the recent adjustment of the sequence has applied artificial NOTCH OFF of the power converter. However, the method of receiving and controlling the OFF signal operates by interaction between the ground and the vehicle's devices, thus it is invalid in the event of failure, and an actual accident is occurring. Therefore, the harmonic currents were required to prevent possible flow of harmonics, and conducted a study to prevent accidental occurrence of train accidents and to verify feasibility of the device through the simulations of the train's experimental analysis and the simulations of the train for safe operation.

The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQM

  • Ghasemi, Ahmad Reza;Mohandes, Masood
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.379-397
    • /
    • 2016
  • In this manuscript, free vibrations of a unidirectional composite orthotropic Timoshenko beam based on finite strain have been studied. Using Green-Lagrange strain tensor and comprising all of the nonlinear terms of the tensor and also applying Hamilton's principle, equations of motion and boundary conditions of the beam are obtained. Using separation method in single-harmonic state, time and locative variables are separated from each other and finally, the equations of motion and boundary conditions are gained according to locative variable. To solve the equations, generalized differential quadrature method (GDQM) is applied and then, deflection and cross-section rotation of the beam in linear and nonlinear states are drawn and compared with each other. Also, frequencies of carbon/epoxy and glass/epoxy composite beams for different boundary conditions on the basis of the finite strain are calculated. The calculated frequencies of the nonlinear free vibration of the beam utilizing finite strain assumption for various geometries have been compared to von Karman one.

Q-band Beam-Lead Single-ended Mixer (Q-band 빔 리드 Single ended 믹서)

  • 이창훈;한석태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.26-32
    • /
    • 1994
  • In this paper, using the newly developed GaAs Schottky beam-lead diode made by Marconi company, we have developed and evaluated the waveguide type single-ended mixer at Q-band. The various components of the mixer were separately designed and optimized using the Super-Compact software. These studies included the design of the step waveguide impedance transformer and the RF-choke filter, and the optimization of a high and low impedance for the RF-choke filter. Moreover, this RF-choke filter pattern included a section to reject the second harmonic frequency of the RF signal. Finally, this Q-band mixer with 1.4GHz/400MHz IF frequency exhibits an average conversion loss of 5.3 dB over 33-50GHz bandwidth.

  • PDF

Acceleration method of fission source convergence based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1347-1354
    • /
    • 2020
  • To improve the efficiency of MC criticality calculation, an acceleration method of fission source convergence which gives an improved initial fission source is proposed. In this method, the MC global homogenization is carried out to obtain the macroscopic cross section of each material mesh, and then the nonlinear iterative solution of the SP3 equations is used to determine the fission source distribution. The calculated fission source is very close to the real fission source, which describes its space and energy distribution. This method is an automatic computation process and is tested by the C5G7 benchmark, the results show that this acceleration method is helpful to reduce the inactive cycles and overall running time.