• Title/Summary/Keyword: harmonic oscillator

Search Result 175, Processing Time 0.023 seconds

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.

Design and Implementation of the new structural VCO with improved tuning range (Tuning range 개선을 위한 새로운 구조의 VCO 설계 및 제작)

  • Kang, Dong-Jin;Kim, Dong-Ok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.293-297
    • /
    • 2009
  • In this thesis, design of a VCO(Voltage controlled Oscillator) with a novel tuning mechanism is presented for the Radar system. This circuit, the 9.5 GHz oscillator is designed and implemented by restructuring microstrip resonator to raise Q value and to require a wide frequency tuning range. This product is fabricated on 2.6 Teflon substrate and device is NE722S01. In this paper, The new microstrip resonator VCO is proposed to achieve the characteristic of a wide frequency tuning range. This microstrip resonator VCO shows the phase noise characteristic of -108.3 dBc/Hz at 1 MHz offset from the fundamental frequency, the output power of 5.7 dBm and the second harmonic suppression of -38 dBc for the VCO are obtained. The manufacture VCO shows a frequency tuning range of 193.8 MHz. The proposed micro trip resonator VCO can be used for X-band Radar System with required tuning range.

  • PDF

Perturbation method for the dynamic analysis of a bistable oscillator under slow harmonic excitation

  • Luongo, Angelo;Casciati, Sara;Zulli, Daniele
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.183-196
    • /
    • 2016
  • In this paper a nonlinear, bistable, single degree of freedom system is considered. It consists of a Duffing oscillator externally excited by a non-resonant, harmonic force. A customized perturbation scheme is proposed to achieve an approximate expression for periodic solutions. It is based on the evaluation of the quasi-steady (slow) solution, and then on a variable change followed by two perturbation steps which aim to capture the fast, decaying contribution of the response. The reconstructed solution, given by the sum of the slow and fast contributions, is in a good agreement with the one obtained by numerical integration.

Squeezing by damping in a driven coupled-oscillator system (구동된 결합 진동자 계에서의 감쇠에 의한 압축)

  • Hyunchu Nha;Lee, Jai-Hyung;Kyungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.248-249
    • /
    • 2001
  • A quantum-mechanical harmonic oscillator undergoes continuous amplitude fluctuation even in its ground state. This fluctuation, also known as the vacuum fluctuation, arises from the nonvanishing commutation .elation, [${\alpha}$, ${\alpha}$$\^$+/] = 1, where ${\alpha}$(${\alpha}$$\^$+/) is the annihilation (creation) operate. of the harmonic oscillator, One can make, however, the fluctuation of one quadrature amplitude decrease below the vacuum-state (or the coherent state) level at the cost of that of the other quadrature. (omitted)

  • PDF

A Design Method of the 94GHz(W-Band) Waveguide Harmonic Voltage Controlled Oscillator for the Armor Sensor (장갑표적 감지센서용 94GHz 도파관 하모닉 전압조정발진기 설계 기법)

  • Roh, Jin-Eep;Choi, Jae-Hyun;Li, Jun-Wen;Ahn, Bierng-Chearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.64-72
    • /
    • 2005
  • In this paper, we propose a design method of the millimeter-wave(W-Band) waveguide cavity harmonic voltage controlled oscillator(VCO) using a Gunn diode for the armor sensor. Using the 3-dimensional simulation tool(Ansoft $HFSS^{TM}$), we were able to find the impedance matching point between waveguide and Gunn diode and estimate the oscillation frequency. A varactor diode is used for the frequency tuning, and we find out the equation for the calculation of the tunable frequency range. The designed VCO shows good performances; 17dBm output power at 94GHz center frequency, 520MHz frequency tuning range similar to the estimated value(480MHz).

Theoretical Results for a Dipole Plasmonic Mode Based on a Forced Damped Harmonic Oscillator Model

  • Tongtong Hao;Quanshui Li
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.449-456
    • /
    • 2023
  • The localized surface-plasmon resonance has drawn great attention, due to its unique optical properties. In this work a general theoretical description of the dipole mode is proposed, using the forced damped harmonic oscillator model of free charges in an ellipsoid. The restoring force and driving force are derived in the quasistatic approximation under general conditions. In this model, metal is regarded as composed of free charges and bound charges. The bound charges form the dielectric background which has a dielectric function. Those free charges undergo a collective motion in the dielectric background under the driving force. The response of free charges will not be included in the dielectric function like the Drude model. The extinction and scattering cross sections as well as the damping coefficient from our model are verified to be consistent with those based on the Drude model. We introduce size effects and modify the restoring and driving forces by adding the dynamic depolarization factor and the radiation damping term to the depolarization factor. This model provides an intuitive physical picture as well as a simple theoretical description of the dipole mode of the localized surface-plasmon resonance based on free-charge collective motion.

A Design and Fabrication of 120 GHz Local Oscillator (120 GHz 국부발진기의 설계 및 제작)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • In this paper, a 120 GHz local oscillator(LO) for the sub-harmonic mixer in the THz transceiver with a carrier frequency of 240 GHz was designed and fabricated. A 120 GHz local oscillator was composed of 40 GHz PLL(Phase Locked Loop), 40 GHz BPF(Band Pass Filter), frequency tripler and 120 GHz BPF. The commercial model of the frequency tripler was used. The measured result of the 40 GHz PLL showed the phase noise of -105 dBc/Hz at the 100 kHz offset frequency. The measured result of 120 GHz BPF showed the insertion loss of 1.3 dB at center frequency of 119 GHz with bandwidth of 5 GHz. The output power of 120 GHz LO was measured to 6.6 dBm.

A Study on Design and Fabrication on X-Band Oscillator for radar system (레이더 시스템용 X-Band 발진기의 설계 및 제작에 관한 연구)

  • 손병문;강중순
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1210-1218
    • /
    • 2001
  • In this paper, A X-band voltage-controlled hair-pin resonator oscillator(VCHRO) is able to a local oscillator or a signal source in transmitter/receiver of a microwave communication system for mobile radar, is designed and fabricated In order to apply mobile radar system is used the hair-pin resonator stronger on shock or vibration than the dielectric resonator, and also, in order to improvement the phase noise and output power is used a system of serial feedback format A hair-pin resonator was simulated by momentum method of HP ADS and then a oscillator circuit was designed that operates at 10.525 GHz by nonlinear method in harmonic balance simulation. The HRO generated output power of 6.93 dBm at 10.525 GHz, phase noise of -57.74 dBc at 100 kHz offset from carrier and the 2'nd harmonic was suppressed -23.90 dBc.

  • PDF

The K-band Oscillator using Split Ring Resonator (Split Ring 공진기를 이용한 K-Band Oscillator)

  • Han-Kee Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 1997
  • In this paper, a 23 GHz push-push oscillator was designed and fabricated for 23 GHz point-to-point communication using split ring resonator. The split ring resonator was equivalent circuit and numerical method of MPIE(Mixed Potential Integral Equation). The analysis of split ring resonator which coupled between microstrip lines was carried out with transmission-mode using this results. The fabricated oscillator showed the output power of 4 dBm, the 1'st harmonic suppression of -20 dBc, the 3rd harmonic suppression of -34 dBc, a SSB phase noise of -109 dBc / Hz at 1MHz offset frequency from the carrier was achieved and 1.4 percents efficiency at 23 GHz. The experimental outputs were in good results with the theoretical and simulated results.

  • PDF

A Study on the Improvement of Performance in VCO Using In/Out Common Frequency Tuning (입출력 공동 주파수 동조를 통한 VCO의 성능 개선에 관한 연구)

  • Suh, Kyoung-Whoan;Jang, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.468-474
    • /
    • 2010
  • In this paper, a VCHO(Voltage Controlled Harmonic Oscillator) for K-band application has been designed and implemented. The proposed oscillator has a structure of two hair-pin resonators placed on input and output of active device. Using in/out common frequency tuning structure, the VCHO yields some advantages of the enhanced fundamental frequency suppression characteristic as well as the improved output power of second harmonic. According to implementation and measurement results, it was shown that a VCHO provides an output power of -2.41 dBm, a fundamental frequency suppression of -21.84 dBc, and phase noise of -101.44 dBc/Hz at 100 kHz offset. In addition, as for the bias voltage from 0 V to -10 V for the varactor diode, output frequency range of 10.58 MHz is obtained with a power variation of ${\pm}0.19\;dB$ over its frequency range.