• Title/Summary/Keyword: harmonic noise

Search Result 620, Processing Time 0.026 seconds

Design and Fabrication of 5.5 GHz Band Oscillator for local wireless Communication system (근거리 무선통신용 5.5 GHz 대역 발진기 설계 및 제작)

  • 주성남;박청룡;부종배;이영수;김갑기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.96-100
    • /
    • 2004
  • This paper shows the design, fabrication and performance of oscillator appled to 5.5GHz RF module for local wireless communication system. Super low noise HJ FET of NE3210S01 is used to obtain a good phase noise Performance. The design Parameters for the optimum operating performance are simulated with ADS simulation. The measured out Power is 10 ㏈m at 5.5GHz, the second harmonic suppression -31 ㏈c, and the phase noise characteristics -98.83 ㏈c at 100KHz offset frequency, respectively. This implemented oscillator is available to local wireless Communication system.

  • PDF

Using harmonic class loading for damage identification of plates by wavelet transformation approach

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.253-274
    • /
    • 2011
  • In this paper, the harmonic displacement response of a damaged square plate with all-over part-through damage parallel to one edge is utilized as the input signal function in wavelet analysis. The method requires the properties of the damaged plate, i.e., no information about the original undamaged structure is required. The location of damage is identified by sudden changes in the spatial variation of transformed response. The incurred damage causes a change in the stiffness or mass of the plate. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this study via numerical examples shown by using harmonic response is more versatile and effective compared with the static deflection response, specially in the presence of noise. In the light of the obtained results, suggestions for future work are presented and discussed.

A Multi-bit VCO-based Linear Quantizer with Frequency-to-current Feedback using a Switched-capacitor Structure

  • Park, Sangyong;Ryu, Hyuk;Sung, Eun-Taek;Baek, Donghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.145-148
    • /
    • 2015
  • In this letter, we present a new linearization method for a voltage controlled oscillator (VCO)-based quantizer in an analog-to-digital converter (ADC). The nonlinearity of the VCO generates unwanted harmonic spurs and reduces the signal-to-noise and distortion ratio (SNDR) of the VCO-based quantizer. This letter suggests a frequency-to-current feedback method to effectively suppress harmonic distortion. The proposed method decreases the harmonic spurs by more than 53 dB. And a VCO-based quantizer employing the proposed linearization method achieves a high SNDR of 74.1 dB.

5.8GHz Band Frequency Synthesizer using Harmonic Oscillator (하모닉 발진을 이용한 5.8GHz 대역 주파수 합성기)

  • Choi, Jong-Won;Lee, Moon-Que;Shin, Keum-Sik;Son, Hyung-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.304-308
    • /
    • 2003
  • A low cost solution employing harmonic oscillation to the frequency synthesizer at 5.8 GHz is proposed. The proposed frequency synthesizer is composed of 2.9GHz PLL chip, 2.9GHz oscillator, and 5.8GHz buffer amplifier. The measured data shows a frequency tuning range of 290MHz, ranging from 5.65 to 5.94GHz, about 0.5dBm of output power, and a phase noise of -107.67 dBc/Hz at the 100kHz offset frequency. All spurious signals including fundamental oscillation power (2.9GHz) are suppressed at least 15dBc than the desired second harmonic signal.

  • PDF

Two Simultaneous Speakers Localization using harmonic structure (하모닉 구조를 이용한 두 명의 동시 발화 화자의 위치 추정)

  • Kim, Hyun-Kyung;Lim, Sung-Kil;Lee, Hyon-Soo
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • In this paper, we propose a sound localization algorithm for two simultaneous speakers. Because speech is wide-band signal, there are many frequency sub-bands in that two speech sounds are mixed. However, in some sub-bands, one speech sound is more dominant than other sounds. In such sub-bands, dominant speech sounds are little interfered by other speech or noise. In speech sounds, overtones of fundamental frequency have large amplitude, and that are called 'Harmonic structure of speech'. Sub-bands inharmonic structure are more likely dominant. Therefore, the proposed localization algorithm is based on harmonic structure of each speakers. At first, sub-bands that belong to harmonic structure of each speech signal are selected. And then, two speakers are localized using selected sub-bands. The result of simulation shows that localization using selected sub-bands are more efficient and precise than localization methods using all sub-bands.

  • PDF

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

Performance Improvement of the Active Noise Control System Using RCMAC and PSO Method (RCMAC 및 PSO 기법을 이용한 능동 소음제어 시스템 성능 개선)

  • Han, Seong-Ik;Shin, Jong-Min;Kim, Sae-Han;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1900-1907
    • /
    • 2010
  • In this paper, a recurrent cerebellar modulation articulation control with praticle swarm optimization (PSO) method has been investigated for improvement of noise attenuation performance in active noise control system. For narrow band noise, FXLMS and RCMAC has a partial satisfactory noise attenuation. However, noise attenuation performance is poor for broad band noise and nonlinear path since it has linear filter structure. To improve this problem, a RCMAC with PSO is proposed and it is shown that satisfactory noise attenuation performance is obtained by some simulations in duct system using harmonic motor noise and KTX cabin noise as a noise source.

High-Performance Millimeter Wave Harmonic Output Oscillator using Sub-Harmonic Wave Injection-Synchronization (서브하모닉 주입동기에 의한 밀리미터파 대역 고조파 발진기의 고성능화)

  • Choi, Young-Kyu;Nam, Byeong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This paper deals with a millimeter wave source which is utilizing sub-harmonic injection-synchronization technique. A 8.7GHz oscillator with MES-FET is fabricated, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as oscillator in this system. Adopting this technique, we can obtain a high stable, high frequency millimeter wave source even though self-oscillating frequency of an oscillator is relatively low. In the experiments, the range of injection-synchronization is about 26MHz and is proportional to the input sub-harmonic power. From the spectrum analysis of the 2nd harmonic output. we blow that the phase noise of the harmonic oscillator is remarkably decreased.

Numerical Analysis on the Flow Noise Characteristics of Savonius Wind Turbines (사보니우스 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.502-511
    • /
    • 2013
  • Noise performance of small wind turbines is critical since these are generally installed near the community. In this study, flow noise characteristics of Savonius wind turbines are numerically investigated. Flow field around the turbine are computed by solving unsteady RANS equation using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Parametric study is then carried out to investigate the effects of operating conditions and geometric design factors of the Savonius wind turbine. Tonal noise components with higher harmonic frequency than the BPF are identified in the predicted noise spectra from a Savonius wind turbine. The end-plates and helical blades are shown to reduce overall noise levels. These results can be used to design low-noise Savonius wind turbines.

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.