• 제목/요약/키워드: hardening mechanism

검색결과 121건 처리시간 0.027초

과공정 Al-Si 합금의 미세조직에 미치는 Sc의 영향 (The Effects of Sc on the Microstructures of Hypereutectic Al-Si Alloys)

  • 정유성;김명한;최석환
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.480-485
    • /
    • 2005
  • Sc has been known to be an very effective ppt-hardening element in Al and Al alloys and also to be effective in modification of eutectic Si in hypoeutectic Al-Si alloys. The modification mechanism of Sc is different from that of the traditional modifier Sr in Al-Si alloys. In the present study the effects of Sc on the primary and eutectic Si in hypereutectic Al-Si alloys were investigated with evaluating the microstructures with OM, EPMA and EBSD methods. The results represent that Sc has only a small effect on primary Si when added less than $0.8wt\%$. However, when Sc addition leading to the precipitation of metallic Sc within primary Si reaches $1.6wt\%$, very coarse primary Si occurs.

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system

  • Zheng, Xing;Shi, Bin;Zhu, Hong-Hu;Zhang, Cheng-Cheng;Wang, Xing;Sun, Meng-Ya
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.337-348
    • /
    • 2021
  • Brillouin Optical Frequency Domain Analysis (BOFDA) is a distributed fiber optic sensing (DFOS) technique that has unique advantages for performance monitoring of piles. However, the complicated production process and harsh operating environment of offshore PHC pipe piles make it difficult to apply this method to pile load testing. In this study, sensing cables were successfully pre-installed into an offshore PHC pipe pile directly for the first time and the BOFDA technique was used for in-situ monitoring of the pile under axial load. High-resolution strain and internal force distributions along the pile were obtained by the BOFDA sensing system. A finite element analysis incorporating the Degradation and Hardening Hyperbolic Model (DHHM) was carried out to evaluate and predict the performance of the pile, which provides an improved insight into the offshore pile-soil interaction mechanism.

금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구 (The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite)

  • 백영민;이상관;엄문광;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Nb 첨가 Zr 합금의 미세조직과 Creep 특성에 미치는 마지막 열처리 온도의 영향 (Effect of Final Annealing Temperature on Microstructure and Creep Characteristics of Nb-containing Zirconium Alloys)

  • 박용권;윤영권;위명용;김택수;정용환
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.879-888
    • /
    • 2001
  • The effects of final annealing temperature on the microstructure and creep characteristics were investigated for the Zr-lNb-0.2X (X=0, Mo, Cu) and Zr-lNb- 1Sn-0.3Fe-0.1X (X=0, Mo, Cu) alloys. The microstructures were observed by using TEM/EDS, and grain size and distributions of precipitates were analyzed using a image analyzer. The creep test was performed at $400^{\circ}C$ under applied stress of 150 MPa for 10 days. The $\beta$-Zr was observed at annealing temperature above $600^{\circ}C$. In the temperature above$ 600^{\circ}C$, the grain sizes of both alloy systems appeared to be increased with increasing the final annealing temperature. The creep strengths of Zr-1Nb-1Sn-0.3Fe-0.1X alloys were higher than those of Zr-1Nb-0.2X ones due to the effect of solid solution hardening by Sn in Zr-lNb-lSn-0.3Fe-0.1X alloy system. Also, Mo addition showed the strong effect of precipitate hardening in both alloy systems. The creep strength rapidly decreased with increasing the annealing temperature up to $600^{\circ}C$. However, a superior creep resistance was obtained in the sample that annealed to have a second phase of $\beta$-Zr. It was considered that the appearance of $\beta$-Zr would play an important role in the strengthening mechanism of creep deformation.

  • PDF

형상기억합금 강화 복합재의 사전 변형률과 형상기억 효과에 대한 이론적 고찰 (An Analytical Study on Prestrain and Shape Memory Effect of Composite Reinforced with Shape Memory Alloy)

  • 이재곤;김진곤;김기대
    • Composites Research
    • /
    • 제17권5호
    • /
    • pp.54-60
    • /
    • 2004
  • 복합재의 사전변형률과 형상기억합금의 형상기억효과를 유발하는 형상기억합금의 상변화량과의 관계를 예측하기 위하여 Eshelby의 등가개재물법과 Mori-Tanaka의 평균장이론을 이용한 새로운 3차원 모델을 제안하였다. 복합재 모델은 가공경화 현상을 갖는 알루미늄을 모재로, 단섬유 TiNi 형상기억합금을 강화재로 사용하였다. 모델 해석에 의하면 사전 변형률이 지극히 작은 영역에서는 사전변형률이 모두 강화재의 형상기억 효과를 유발하고, 이 보다 큰 영역에서 사전 변형률은 강화재의 형상기억 효과와 모재의 소성변형에 의한 것으로 나타났다. 이러한 복합재의 강화기구는 모재의 가공경화 현상과 형상기억 효과에 의한 항복응력 증가를 분리하여 제시되어야 한다.

Mechanical and Thermal Properties of Ag sheath alloys for Bi-2223 superconductor tape

  • Kim, Tae-Woo;Joo, Jin-Ho;Nah, Wan-Soo;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Hai-Doo;Chung, Hyung-Sik;Lee, Sang-Hyun
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.61-67
    • /
    • 1999
  • We evaluated the effect of alloying element additions to Ag sheath on mechanical, electrical and thermal properties of Bi-2223. Additions of Au, Pd and Mg to Ag sheath increased hardness and strength, while reduced elongation and electrical and thermal conductivity. In addition, microstructural investigation showed that the grain size of Ag significantly decreased with increasing content of alloying elements. The improvements in strength and hardness are believed to be due to the presence of alloying elements that lead to strengthen materials by combined effects of solid-solution, dispersion hardening and grain size hardening. Thermal conductivity of Ag and Ag alloys was evaluated in the temperature range from 77 K to 300 K, and com-pared to calculated value obtained by Wiedermann-Franz law. It was observed that the thermal conductivity decreased with increasing the content of alloying elements. Specifically, the thermal conductivity of $Ag_{0.92}Pd_{0.06}Mg_{0.02}$ alloy was measured to be $48.2W/(m{\cdot}K)$ at 77 K, which is about 6 times lower than that of $Ag(302.6W/(m{\cdot}K))$.

  • PDF

고주파 열처리된 SAE1055 강의 피로거동 및 이의 확률론적 평가 (Probabilistic Analysis of Fatigue Behavior of Induction Hardened Steel)

  • 이선호;이승표;강기원
    • 대한기계학회논문집A
    • /
    • 제37권3호
    • /
    • pp.429-436
    • /
    • 2013
  • 본 논문에서는 고주파 열처리된 SAE1055 베어링강의 경도에 따른 피로 거동 및 이의 확률론적 평가를 수행하였다. 이를 위하여 경도 수준에 따른 5 종류의 시험편(A : 원재료, B : HV390-전경화, C : HV510-전경화, D : HV700-전경화 및 E : HV-700 표면경화)를 준비하였다. 피로시험은 4 점 회전굽힘 피로시험기를 이용하여 응력비 R=-1 의 조건하에서 수행하였다. 그 결과, SAE1055 강의 피로 거동은 경도에 따라 크게 변화하였으나 HV510 수준이상에서는 피로한도의 증가는 관찰되지 않았다. 또한 피로 파손기구에 대한 경도의 영향을 평가하기 위하여 SEM(scanning electron microscope)을 이용한 파면 관찰을 수행하였다. 피로수명의 통계적 특성은 P-S-N(probabilistic S-N) 곡선을 이용하여 평가되었으며 이에 대한 경도의 영향은 잔류치 해석(residue analysis)을 통하여 수행하였다.

Characterization on the Thermal Oxidation of Raw Natural Rubber Thin Film using Image and FT-IR Analysis

  • Kim, Ik-Sik;Cho, Hwanjeong;Sohn, Kyung-Suk;Choi, Hwa-Soon;Kim, Sung-Uk;Kim, Sinkon
    • Elastomers and Composites
    • /
    • 제55권1호
    • /
    • pp.51-58
    • /
    • 2020
  • In this study, the thermal oxidation of raw natural rubber (NR) was investigated under controlled conditions by optical image and fourier transform infrared (FT-IR) analysis. The thermal oxidation was performed on a transparent thin film of raw NR coated on a KBr window in a dark chamber at 80℃ under low humidity conditions to completely exclude moisture and restrict light oxidation. Images of the thin film of raw NR were obtained before and after thermal oxidation. FT-IR absorption spectra were measured in the transmission mode at different thermal exposure times. The thermal oxidation of NR was examined by the changes in the absorption peaks at 3449, 1736, 1447, 1377, 1242, 1072, and 833 cm-1, which corresponded to a hydroxyl group (-OH), a carbonyl group (-C=O) from an aldehyde and a ketone, a methylene group (-CH2-), a methyl group (-CH3), a carbon-oxygen single bond (-C-O) from an epoxide, a carbon-oxygen bond (-C-O) from an ether, an alcohol, a peroxide, or a cyclic peroxide, and a cis-methine group (cis-CCH3=CH-), respectively. In the initial stage of thermal oxidation, two different types of free radicals were produced quickly and randomly by the homolytic cleavage of a double bond and allylic hydrogen abstraction. Aldehydes and ketones were formed from chain scissions of the double bonds and alcohols were produced from allylic hydrogen abstraction at the methylene or methyl groups. Two reactions seemed to proceed competitively with each other. At a later stage, oxidative crosslinks seemed to dominate through the combination of free radicals such as an allyl radical (CH=CHCH2·), alkoxy radical (RO·), and peroxy radical (ROO·) and the reaction of a hydroperoxide (-ROOH) with a double bond. The image obtained after thermal oxidation showed hardening without cracks. Based on these observations, a plausible two-step mechanism was suggested for chain hardening caused by the thermal oxidation.

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.