DOI QR코드

DOI QR Code

Probabilistic Analysis of Fatigue Behavior of Induction Hardened Steel

고주파 열처리된 SAE1055 강의 피로거동 및 이의 확률론적 평가

  • 이선호 ((주)일진글로벌 기술연구소) ;
  • 이승표 ((주)일진글로벌 기술연구소) ;
  • 강기원 (국립군산대학교 기계자동차공학부)
  • Received : 2012.09.13
  • Accepted : 2012.11.14
  • Published : 2013.03.01

Abstract

This study considers how the fatigue behavior and probabilistic properties of SAE1055 steel are related to its hardness level. SAE1055 steel was heat-treated using induction hardening. Five types of specimens were prepared (A: base material, B: through hardened material with HV390, C: through hardened material with HV510, D: through hardened material with HV700, and E: surface hardened material with HV700). Fatigue tests were performed under a stress ratio of R = -1 using a 4-point rotary bending fatigue tester. The fatigue behaviors were greatly influenced by the hardness, but the fatigue limit did not increase over a hardness of HV510. In addition, the effect of the hardness level on the failure mechanism was evaluated using a scanning electron microscope. The probabilistic properties of the fatigue life were investigated using a probabilistic S-N approach, and the effect of the hardness level on these properties was evaluated using a residue analysis.

본 논문에서는 고주파 열처리된 SAE1055 베어링강의 경도에 따른 피로 거동 및 이의 확률론적 평가를 수행하였다. 이를 위하여 경도 수준에 따른 5 종류의 시험편(A : 원재료, B : HV390-전경화, C : HV510-전경화, D : HV700-전경화 및 E : HV-700 표면경화)를 준비하였다. 피로시험은 4 점 회전굽힘 피로시험기를 이용하여 응력비 R=-1 의 조건하에서 수행하였다. 그 결과, SAE1055 강의 피로 거동은 경도에 따라 크게 변화하였으나 HV510 수준이상에서는 피로한도의 증가는 관찰되지 않았다. 또한 피로 파손기구에 대한 경도의 영향을 평가하기 위하여 SEM(scanning electron microscope)을 이용한 파면 관찰을 수행하였다. 피로수명의 통계적 특성은 P-S-N(probabilistic S-N) 곡선을 이용하여 평가되었으며 이에 대한 경도의 영향은 잔류치 해석(residue analysis)을 통하여 수행하였다.

Keywords

References

  1. Yoon, S.J. and Choi, N.S., 2011, "High Cyclic Fatigue Life and Fracture Behaviors of Shot-Peened Bearing Steel," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 2, pp.1119-1129.
  2. Kerscher, E. and Lang, K.H., 2010, "Influence of Thermal and Thermomechanical Treatments on the Fatigue Limit of a Binitic High-Strength Bearing Steel," Procedia Engineering, Vol. 2, pp.1731-1739. https://doi.org/10.1016/j.proeng.2010.03.186
  3. Kerscher, E., Lang, K.H. and Lohe, D., 2008, "Increasing the Fatigue Limit of a High-Strength Bearing Steel by Thermomechanical Treatment," Materials Science and Engineering A, Vol. 483-484, pp.415-417. https://doi.org/10.1016/j.msea.2006.09.170
  4. Murakami, Y., Kodama, S. and Konuma, S., 1989, "Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. I: Basic Fatigue Mechanism and Evaluation of Correlation Between the Fatigue Fracture Stress and the Size and Location of Non-Metallic Inclusions," International Journal of Fatigue, Vol. 11, No. 5, pp.291-298. https://doi.org/10.1016/0142-1123(89)90054-6
  5. McGreevy, T.E. and Socie, D.F., 1999, "Competing Roles of Microstructures and Flaw Size," Fatigue & Fracture of Engineering Materials & Structures, Vol. 22, pp.495-508. https://doi.org/10.1046/j.1460-2695.1999.00190.x
  6. Li, W., Sakai, T., Li, Q., Lu, L.T. and Wang, P., 2011, "Effect of Loading Type on Fatigue Properties of High Strength Bearing Steel in Very High Cycle Regime," Materials Science and Engineering A, Vol. 528, pp.5044-5052. https://doi.org/10.1016/j.msea.2011.03.020
  7. Cubberly, W.H., 1993, Metals Handbook Ninth ed, Vol. 1, Metal Park, Ohio, USA.
  8. ASTM E8M. 2009, Standard Test Method for Tension Testing of Metallic Materials.
  9. ISO 1143, 2010, Metallic Materials - Rotating Bar Bending Fatigue Testing.
  10. Dowling, N.E., 1999, Mechanical Behavior of Materials 2nd Ed, Prentice Hall International Inc, Virginia, USA.
  11. Liu, Y.B., Li Y.D., Li, S.X., Yang, Z.G., Chen, S.M., Hui, W.J. and Weng, Y.Q., 2010, "Prediction of the SN curves of High-Strength Steels in the Very High Cycle Fatigue Regime," International Journal of Fatigue, Vol. 32, pp.1351-1357. https://doi.org/10.1016/j.ijfatigue.2010.02.006
  12. Ravichandran, K.S., Ritchie, R.O. and Murakami, Y., 1999, "Small Fatigue Cracks : Mechanics, Mechanisms and Applications," Elsevier.
  13. Li, W., Sakai, T., Li, Q., Lu, L.T. and Wang, P., 2010, "Reliability Evaluation on Very High Cycle Fatigue Property of GCr15 Bearing Steel, International Journal of Fatigue, Vol.32, Issue 7, pp.1096-1107. https://doi.org/10.1016/j.ijfatigue.2009.12.008
  14. Kang, K.W., Goo, B.C., Kim, J.H., Kim, D.K. and Kim, J.K., 2009, "Experimental Investigation on Static and Fatigue Behavior of Welded SM490A Steel under Low Temperature," Steel Structures, Vol. 9, pp.85-91. https://doi.org/10.1007/BF03249483