• Title/Summary/Keyword: hard-sphere chain

Search Result 6, Processing Time 0.027 seconds

The Interaction Potential Functions in an Electrolyte Protein Solution

  • Jee, Nam-Yong;Kim, Jae-Jun
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.654-658
    • /
    • 2006
  • Recent developments in equations of state for molecular fluids have demonstrated the feasibility of using the hard-sphere equation to describe the effects of repulsive forces in simple fluids. By including a suitable term for attractive forces, most conveniently a uniform background potential, the properties of bio-macromolecular interaction can be roughly calculated. However, the choice of the potential used in perturbed hard-sphere chain (PHSC) theory for describing the attractions between macromolecules is rather complicated. For hard-sphere chains, the prediction accuracy from each model strongly depends on the choice of potential function.

Phase Transition and Approximated Integral Equation for Radial Distribution Function

  • Yoon, Byoung-Jip;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.20-23
    • /
    • 1986
  • A reduced condition for liquid-gas phase transition from the singularity of compressibility is derived using diagrammatic approach and is examined in the hard sphere system. The condition turns out that the Percus-Yevick and the Hyper-Netted-Chain approximation never conceive the idea of phase transition, and explains that the liquid-gas transition does not exist in hard sphere system. The solid-fluid transition is considered on the viewpoint of correlation function and diagrammatic analysis.

Equations of State for Hard-Sphere Chains: Effect of Attractive Contribution

  • Kim Jae-Jun
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.220-229
    • /
    • 2006
  • Several equations of state for hard-sphere chains with various perturbation terms are reviewed. For each model, three characteristic parameters are required to represent phase equilibria of normal fluids and obtained from thermodynamic properties of pure saturated liquids. The models are then compared with computer simulation data to show the effect of attractive contribution forms employed. Calculated values of vapor-liquid equilibria (VLE) of hydrocarbons that can be reproduced for each model are also compared with experimental results. An additional parameter, ${\zeta}_{KB}$, is required to represent the VLE of pure water, which is ascertained to have a strong influence on the theoretical coexistence curve.

Grand-Canonical Monte Carlo 시뮬레이션을 이용한 고분자 전해질 다이오드의 메커니즘 연구

  • Lee, Dong-Hyeok;Jang, Rak-U
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.80-85
    • /
    • 2016
  • 본 연구에서는 Grand-Canonical Monte Carlo 시뮬레이션(GCMC)을 이용하여 서로 반대의 전하를 띤 고분자 전해질의 정전기적 특징을 이해하고, 고분자 전해질 다이오드의 메커니즘을 연구하였다. 고분자 전해질과 서로 반대의 전하를 띤 이온들의 모델은 전하를 띤 free-jointed hard chain과 hard sphere을 이용하였다. 본 연구진은 위와 같은 시뮬레이션을 통해, 평형 상태일 때의 고분자 전해질과 이온의 분포를 연구하였으며, 이 시스템에 전압을 걸어줌에 따라 이온의 이동 모습을 관찰하였다. 또한 전압의 효과와 더불어 고분자 전해질의 농도와 이온들의 크기 변화에 대해서도 연구를 진행하였다.

  • PDF

Various Thermodynamic Factors in Designing Nanostructured Materials from Block Copolymers

  • Cho, Jun-Han
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.207-208
    • /
    • 2006
  • Here, we discuss various thermodynamic factors that affect the design of nanomaterials based on block copolymers. It is well known that the ordering behavior is determined by composition, chain size N, and the ubiquitous Flory. However, the recent discovery of ordering upon heating, immisibility loops, and baroplasticity addresses a clear need for further microscopic interpretation of such. in order to help to design nanomaterials at aimed purposes. Employing a perturbed hard sphere chain model, the molecular factors such as self and cross-interactions, free space distribution, and directional interactions are incorporated in. It is shown that not only typical ordering phenomena, but also the recent observations just mentioned are all described through this unified way.

  • PDF

Phase Behaviors of Binary Protein Systems: Consideration of Structural Effects

  • Kim, Sang-Gon;Kong, Sung-Ho;Bae, Young-Chan;Kim, Sun-Joon
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.241-249
    • /
    • 2003
  • A molecular-thermodynamic model to describe the salt-induced protein precipitation is developed based on the perturbation theory. We employed the modified perturbed hard-sphere-chain (PHSC) equation of state for copolymer mixtures to take into account the pre-aggregation effect among protein particles. Hypothetical pressure-composition diagrams are computed with various size differences and salt concentrations. The precipitation behaviors are also studied for various types of pre-aggregation effect for the given systems.